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Low volume high value (LVHV) supply chains such as airline manufacturing, power 

plant construction, and shipbuilding are especially susceptible to risks. These industries 

are characterized by long lead times and a limited number of suppliers that have both 

the technical know-how and manufacturing capabilities to deliver the requisite goods and 

services. Disruptions within the supply chain are common and can cause significant and 

costly delays. Although supply chain risk management and supply chain reliability are 

topics that have been studied extensively, most research in these areas focus on high vol-

ume supply chains and few studies proactively identify risks. In this research, we develop 

methodologies to proactively and quantitatively identify and mitigate supply chain risks 

within LVHV supply chains. First, we propose a framework to model the supply chain 

system using fault-tree analysis based on the bill of material of the product being sourced. 

Next, we put forward a set of mathematical optimization models to proactively identify, 

mitigate, and resource at-risk suppliers in a LVHV supply chain with consideration for a 
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firm’s budgetary constraints. Lastly, we propose a machine learning methodology to quan-

tify the risk of an individual procurement using multiple logistic regression and industry 

available data, which can be used as the primary input to the fault tree when analyzing 

overall supply chain system risk. Altogether, the novel approaches proposed within this 

dissertation provide a set of tools for industry practitioners to predict supply chain risks, 

optimally choose which risks to mitigate, and make better informed decisions with respect 

to supplier selection and risk mitigation while avoiding costly delays due to disruptions in 

LVHV supply chains. 

Key words: Supply chain risk management, system reliability, fault tree analysis, multiple 
logistic regression, mixed integer programming, optimization 
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CHAPTER 1 

INTRODUCTION 

The act of coalescing risk-based decision inputs and subsequently making informed 

risk mitigating decisions within a firm is a complex activity. The information available 

is often qualitative, contained in silos within the organization, and requires extraordinary 

coordination and timeliness in order to mitigate risks before they occur. As a result, these 

decisions are made qualitatively and without regard for the overall system impact. The 

result is a reactive-based approach that focuses on resolving issues after they have occurred. 

The objective of this research is to advance the state of the art with respect to quan-

titative risk identification, mitigation planning, and supplier selection within manufactur-

ing supply chains and serve as a bridge for several academic communities. The methods 

developed as part of this research have practical applications within industry. Firms are 

constantly challenged with proactively reducing the risk exposure to their respective sup-

ply chains. However, the means of doing so in an efficient, integrated, quantitative, and 

effective manner is not standard practice. Although a significant amount of research has 

been published in the areas of Operations Research, Big Data, Supply Chain Risk Man-

agement, Reliability Engineering, and Systems Engineering, a gap exists where these areas 

intersect and specifically for low volume high value (LVHV) manufacturing supply chains 

1 
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such as those used in the shipbuilding, aerospace, defense, and power plant construction 

industries. Merging and advancing the state of the art across these respective communities 

of research creates value in both academic and industrial settings. Ultimately, the benefits 

of deploying such a methodology has the potential to save firms millions of dollars annu-

ally. For example, the commercial nuclear power industry, which relies on LVHV supply 

chains, can experience costs on the order of $2 million per day as the result of delays in 

new power plant construction [1]. 

1.1 Background and Motivation 

The motivation for this research is rooted in more than 15 years of experience by the 

author across a variety of firms and industries. Whether large or small revenue, private or 

public, seasoned or start up, high or low volume, make-to-stock or make-to-order, compa-

nies struggle to operationalize data across silos. As a result of improved technology, the 

ability to collect data becomes easier. However, turning that data into information remains 

a challenge. As a result, firms often utilize weighted scoring methods and qualitative rank-

ings to assess supplier risk. Although simple to deploy, these methods are not typically 

validated with respect to the effectiveness in improving risk management decisions nor do 

they have the resolution necessary to provide clarity to the decision making process [2]. 

We have chosen a LVHV supply chain as the focus of this research not only because 

of the author’s experience working in the industry, but also because the industry provides 

a unique opportunity to examine a supply chain that has an intersection of challenges with 

respect to mitigating risks that other types of supply chains do not. Single sources of 

2 
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supply, identifying the appropriate suppliers with the requisite capabilities, cost burdens 

associated with navigating regulatory requirements, large product manufacturing, low vol-

ume manufacturing, and make-to-order/design are attributes associated with many types of 

manufacturing supply chains. However, the supply chains associated with nuclear power 

plant construction face all of these challenges and associated risks simultaneously, which 

makes the industry an interesting focal point for this research. In 2014, the World Nuclear 

Association summarized the challenges facing the nuclear supply chain in three primary 

areas - economic, capability, and quality [3]. 

Economically, the production of nuclear electricity rivals and recently has been lower 

than that of coal and has been significantly less than gas historically. However, the costs 

associated with building a new nuclear power plant are significant and continue to increase. 

According to the Union of Concerned Scientists, the 75 new power plants constructed 

between 1966 and 1977 in the United States incurred an average overrun cost of 207%. 

In recent years, construction costs have risen much faster for nuclear power than for other 

options. [4] 

Problematic designs, equipment delivery, personnel, construction, and commissioning 

are inherent risks that drive costs. In order to leverage newer technology, first-of-a-kind 

reactors are being built, which raise the risks even higher and exposes firms to delays while 

problems with the new technology are worked out. The effects ripple throughout the supply 

chain. Furthermore, because of the operational efficiencies of nuclear energy, countries are 

introducing nuclear power for the first time, which creates problems associated with the 

3 
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inherent learning curve of the companies within the supply chains of taking on such an 

endeavor. [5] 

Despite the economic challenges, approximately 295 new nuclear power plants were 

under construction or planned in 2014 introducing an estimated $26 billion of interna-

tional procurement per year [3]. The increase in demand, increase in complexity, shortage 

of skilled labor, and shrinking manufacturing capabilities globally has placed a significant 

demand on the firms comprising the supply chains tasked with building the new power 

plants. Companies that once provided the nuclear-quality equipment and materials used 

in the construction of existing nuclear power plants have either exited the industry or no 

longer exist. As a result, a gap exists in equipment and manufacturing capabilities and 

quality certifications within the industry. For example, at one time approximately 400 

companies in the United States supplied components for nuclear power plants and 900 nu-

clear stamps (N-stamp), the certification provided by the American Society of Mechanical 

Engineers (ASME) that permits firms to supply certain nuclear materials and components, 

had been issued. Today, fewer than 80 suppliers and 200 N-stamp certifications exist [4]. 

This research aims to contribute to the current state of the art by answering the follow-

ing questions while at the same time developing new techniques to assist supply chain pro-

fessionals in making more proactive decisions to mitigate the risks associated with LVHV 

supply chains using industry available data: 

1. How can a complex supply chain be organized and analyzed simply to assess risk? 

2. What are the mitigation activities that should be undertaken to mitigate risk within 
the supply chain, simultaneously minimize risk, and at the same time achieve bud-
getary goals? 

4 
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3. In advance of placing a purchase order, how can the reliability of a procurement be 
predicted and what are the significant factors that contribute to the reliability of the 
procurement? 

Figure 1.1 provides an overview of the research, which is based on three primary areas 

associated with answering the aforementioned questions. 

Figure 1.1: Overview of research. 

First, we develop a methodology to represent a supply chain system as a fault tree and 

base it on a bill of materials. This allows us to simultaneously organize the supply chain 

into its respective tiers as well as analyze the overall reliability of the supply chain. Fur-

thermore, this approach enables practitioners to simulate purchasing decisions proactively 

and assess the effect that the decisions may have with respect to risk. We demonstrate this 

concept through three industry-relevant case studies. 

Next, building on the fault tree representation, we develop mixed integer programs 

to select optimal supplier mitigation activities to minimize risk within the supply chain 

5 
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portfolio under budgetary constraints. We apply the concept to two LVHV supply chains 

in the nuclear power plant construction industry using industry-relevant data. 

The third element of this research focuses on predicting the risk of a procurement. To 

do this, we develop a multiple logistic regression model using The American Production 

and Inventory Control Society’s (APICS) Supply Chain Operations Reference (SCOR®) 

Model as a basis for our definition of reliability, which serves as the dependent variable 

in our model. Forty-two explanatory variables were selected based on industry experience 

and data available. Actual data from a firm within the nuclear power plant construction 

supply chain is used to build the model. We assess the performance and predictability of 

the model using standard metrics and analyze the explanatory variables for significance. 

We envision that the output models developed can serve as an input to the data utilized in 

modeling the supply chain system as a fault tree. However, we leave this area for future 

research. 

The long-term goal of this research is to develop and implement a comprehensive soft-

ware toolkit for supply chain professionals with the potential to integrate the three elements 

of the research described herein with one another and with a firm’s existing data streams or 

as a stand-alone application. The toolkit has the potential to provide supply chain profes-

sionals a set of risk assessment and decision support tools that currently do not exist with 

regularity in industry. Example areas of supply chain planning where the future applica-

tion could be implemented include, but are not limited to supply chain design activities, 

at the time of supplier selection, and for risk mitigation planning after purchase orders are 

placed. This dissertation serves as a foundation for that future work. 
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The remainder of this dissertation is organized as follows. The next section presents 

an overview of the relevant literature and discusses how this research contributes to filling 

current gaps. Subsequent chapters include a review of the specific literature associated 

with the topics discussed. Chapter 2 details the methodology associated with representing 

a supply chain system as a fault tree and discusses the usefulness of such an approach when 

applied to industry-relevant scenarios. Chapter 3 presents a optimization models to iden-

tify risk mitigating activities to minimize the unreliability of the supply chain being studied 

with consideration for budgetary constraints. The supply chains of two firms within the nu-

clear power plant construction supply chain are analyzed in Chapter 3. Chapter 4 develops 

a multiple logistic regression model based on industry data to predict the reliability of a 

procurement based on 42 explanatory variables. Lastly, Chapter 5 summarizes the conclu-

sions of this research and recommends areas for future work. The Appendix includes a 

summary of the notation used within each Chapter as well as the detailed results generated 

from the content of Chapter 4. 

1.2 Literature Review 

This literature review provides a summary of the literature related to supply chain risk 

management, which lies at the core of the three areas discussed in this dissertation (see 

Figure 1.2). A more detailed review of the literature pertaining to the areas discussed are 

contained within the respective chapters of the dissertation that follow. 
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Figure 1.2: Topics of research outlined in this dissertation. 

In 2003, Juttner et al. noted that supply chain risk management was in its infancy and 

outlined an agenda for future research in four primary areas: 1) assessing the risk sources 

for the supply chain, 2) defining the risk concept and adverse consequences, 3) identifying 

the risk drivers of the supply chain strategy, and 4) mitigating risks for the supply chain 

[6]. In the time since, a great deal of research has been applied to the field of supply 

chain risk management [7]. Between 1978 and 2003, an average of five papers per year 

were published in the area of supply chain risk modeling compared to an average of 44 

papers per year in the time since [7]. Supply chain risk has also increased as a result of 

supply chains becoming more complex due to an increase in global sourcing and “leaning-

down” [8]. In addition, the sources of risk to a supply chain have increased in complexity. 

However, much of what has been published in the literature focuses on a specific function 

or a part of a supply chain and does not consider the entire supply chain as a portfolio [9]. 
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Our research aims to model supply chain risk across the supply chain by viewing the 

supply chain as a system and schematically as a fault tree. By taking this approach, we 

are able to overlay models that propose activities to mitigate risks. In addition, we propose 

models that assess the sources of risk as well as identify the drivers of those risks. Recently, 

some authors have proposed that the cross-fertilization of concepts, tools, and theories pro-

vides a pathway to advance the area of supply chain risk management modeling research 

[10]. Our research follows this theory and brings together the areas of modeling (logis-

tic regression), optimization (mixed integer programming), and fault tree analysis in order 

to provide the supply chain practitioner with a more robust quantitative decision making 

toolbox to manage and mitigate risks. 

Although several authors have proposed methods to quantify supply chain risk and the 

factors affecting that risk, none that we are aware of apply the methods to LVHV industries 

[11, 12, 13, 14, 15, 16]. In addition, no published works found as part of this research 

model supply chain reliability in terms of the metrics proposed in the SCOR® model. 

Mixed integer programming is a common optimization method. However, when ap-

plied to supply chain risk management, many of the proposed models use expected cost 

or profit in the objective function [17]. Some authors propose to minimize cost in relation 

to site location, disaster preparedness, transportation network design, and geographic risks 

[18, 19, 20, 21, 22]. Instead, our research focuses on maximizing reliability across the sup-

ply chain system, which is represented as a fault tree. Similar modeling techniques have 

been applied to fault tree analysis and reliability optimization [23, 24]. However, not when 
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the underlying fault tree is constructed from a product’s bill of materials and represents the 

supply chain system responsible for delivering that product to a firm. 
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CHAPTER 2 

PROACTIVE COST-EFFECTIVE RISK MITIGATION IN A LOW VOLUME HIGH 

VALUE SUPPLY CHAIN USING FAULT TREE ANALYSIS 

2.1 Introduction 

In this chapter we address the problem of being able to determine areas of risk within 

a supply chain proactively and subsequently implement an effective mitigation strategy to 

address those risks. Specifically, a quantitative, prevention-based methodology using fault 

tree analysis is employed. The unreliability of the supply chain is modeled as a fault tree 

whereby the top event represents a critical assembly and basic events are based on the 

critical assembly’s bill of materials. The many individual components and subassemblies 

comprising the critical assembly are represented by events within the fault tree. Event and 

gate probabilities are a function of the unreliability of delivering the particular component, 

subassembly, or critical assembly on-time. As a result, the completed fault tree provides 

insight into the at-risk areas within the supply chain being studied, an opportunity to apply 

interdiction strategies at various points within the supply chain, and study the consequences 

of implementing particular actions in advance of executing those strategies. 
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2.1.1 Motivation 

Within recent years, a number of factors related to how businesses are managed have 

exposed supply chains to additional risks. These factors include: (1) a focus on efficiency 

rather than effectiveness, (2) supply chain globalization, (3) focused factories and central-

ized distribution, (4) a trend toward outsourcing, and (5) reduction of the supply base [6]. 

Industries that rely on low volume, high value, long lead time products have greater con-

sequences when disruptions occur and especially if risks are realized at the latter stages 

of production or downstream within the supply chain. Examples of such industries in-

clude airline manufacturing [25], nuclear power plant construction [26], and shipbuilding 

[27]. Further compounding the risk exposure within these supply chains is that by nature, 

manufacturing capability and qualified suppliers are scarce. 

Manufacturing firms are always seeking better ways to mitigate risk when making de-

cisions related to the purchase of goods and services. These decisions are quite complex 

and require decision makers to consider several inputs. In addition to price, considerations 

must be made regarding the capabilities of the suppliers as well as the probability that the 

goods and services are delivered on-time and meet quality and design specifications. Firms 

that produce standard high volume low value products (i.e., consumer electronics, house-

hold appliances, clothing, etc.) are challenged with managing multiple sources effectively 

while keeping prices low. On the other hand, manufacturers that produce relatively LVHV 

products (i.e., aerospace, power plant construction, energy exploration, shipbuilding, etc.), 

may be constrained by the scarcity of suppliers with the requisite manufacturing capabil-

ities to produce the product of interest. Furthermore, these industries typically have more 
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stringent quality and regulatory requirements, which may narrow the supply base even fur-

ther. With such few sourcing options, firms are often greatly exposed to the risks associated 

with a limited number of suppliers. This chapter will focus on a proposed method to cost-

effectively and proactively mitigate the risk associated with sourcing decisions in LVHV 

supply chains. 

Airliner manufacturing is one example of a LVHV supply chain. In 2014, one report 

noted that since the start of manufacturing in 2007, Boeing had manufactured 228 [28] of 

their 787 Dreamliner aircraft at an average unit price of $258 million [29]. As of 2011, 

Boeing’s total expenditure on the 787 program was estimated at $32 billion [30]. Boeing 

utilized a global outsourcing model in the design and manufacture of the 787; the likes of 

which had never been seen before. The outsourcing model was viewed as a primary means 

to significantly reduce development lead times and costs. In 2001, at a Boeing Technical 

Excellence Symposium [31], Boeing engineers warned of potential quality problems with 

prime contractors as a result of the “hands-off” outsourcing model being deployed. Ulti-

mately, the launch of the Boeing 787 was delayed by more than 3 years and had budget 

overruns on the order of billions of dollars [25]. 

According to Boeing, one 787 Dreamliner is manufactured from approximately 2.3 

million parts and an overall supply base of 5,000 factories support the manufacture of their 

five primary airliners [32]. The combination of the overall investment, diversity and quan-

tity of suppliers, volume of products, and severity of the impact of a delay illustrates the 

need to proactively and systemically approach risk mitigation in such a supply chain. Do-
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ing so in a quantitative manner enables businesses to make better risk-informed decisions 

cost-effectively. 

The supply chain associated with the manufacture of LVHV components can be com-

plex and lead times of critical components can be on the order of many years. Further, the 

unit cost of some components can exceed one hundred thousand dollars. Due to the large 

size of the components - some can weigh several tons - and subsequently the fabrication 

and manufacturing capability required to fulfill design requirements, a limited number of 

global suppliers exist. The quality and regulatory requirements placed on suppliers within 

these industries also increase the complexity of decision making. Hundreds of suppliers 

may be used in the assembly of an airline or in the construction of a nuclear power plant. In 

summary, suppliers with requisite capabilities are scarce, supplier development and order 

fulfillment lead times are long, and supply chain failures can have a significant impact on 

delivery, which can result in legal and financial ramifications. One estimate places the cost 

of delay in construction of a nuclear power plant at $2 million per day [1]. As a result, 

supplier selection and proactive risk mitigating activities are critical to ensure that suppli-

ers deliver on time. Failing to implement such an approach proactively can be costly and 

time consuming. 

As enterprise resource planning and manufacturing execution systems have improved, 

firms have become more objective with planning and scheduling decisions. Likewise, site 

selection, inventory stocking levels, and transportation decision models have become more 

sophisticated within supply chains. However, a gap in common industry practice still ex-

ists with respect to providing timely and cost-effective risk interdiction activities. As a 
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result of the regulatory scrutiny on LVHV industries producing critical components, these 

interdiction strategies are typically focused on compliance to regulator standards and not 

necessarily or specifically targeted to the performance of suppliers. Although compliance 

to regulations is vital, doing so does not ensure efficient or cost effective risk mitigation. 

Furthermore, the use of quantitative decision making instruments that consider the cost-

risk tradeoff is scarce. 

This research provides a methodology to solve the problems associated with quanti-

tatively assessing risk, selecting suppliers, and developing risk interdiction plans within a 

LVHV supply chain. In doing so, we model a product’s bill of material and subsequent 

supply chain in the form of a fault tree. Unreliability measures are calculated and eval-

uated. Alternate sourcing options are evaluated on the basis of a tradeoff between risk 

reduction and the cost of implementing the mitigating actions. Examples of alternative 

options include redundant suppliers, improving existing suppliers, selecting higher per-

forming suppliers, and combinations thereof. 

2.1.2 Related Literature 

A wide body of literature is available in the area of risk response and primarily focuses 

on redundancies, safety stock and inventory buffers, auditing, management intervention, 

and other strategies to hedge the consequences of a risk being realized [33]. However, 

opportunities exist in the areas of (1) assessing risk sources, (2) defining risk and conse-

quences, (3) identifying risk drivers, and (4) mitigating risks [6]. As a result, instruments 
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that model these areas associated with risk prevention are scarce as noted in several litera-

ture surveys [34, 35, 36, 22]. 

Researchers have analyzed supply chain risk management extensively from a qualita-

tive point of view [37]. In their agenda for future research in the field, Juttner et al.[6] 

proposed a basic construct for supply chain risk management and noted needs for more 

practical approaches to risk assessment, a supply chain and industry-specific approach, 

better approaches for managers to identify risk drivers, and processes to guide trade-off 

decision making between risk reduction and mitigation costs. Likewise, several authors 

have proposed strategic frameworks and approaches to supply chain risk management 

[37, 8, 6, 38, 39, 33, 40] and some have focused specifically on mitigating such risks 

[41, 42, 43, 44, 45]. However, empirically based published work in the area remained 

sparse until recently and approaches have varied [46, 8]. In a review of quantitative models 

for managing supply chain risks, Tang [17] suggests that it is appropriate to use cost or 

profit as a means to evaluate options for managing operational risks and the usefulness of 

“back-up” suppliers. Furthermore, he discusses demand management, product manage-

ment, and information management strategies. Toward the goal of developing an approach 

that minimizes cost as a means to evaluate options, Aqlan and Lam [47] propose a model 

to maximize risk reduction under budgetary constraints using bow-tie analysis. However, 

the authors use expert opinion as the basis for the likelihood and impact of the supply chain 

risks. 

In practice, decisions related to supplier selection are often unstructured [48]. A vari-

ety of multi-criteria decision making approaches have been studied with respect to supplier 
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selection and envelop several factors in the categories of quality, cost, delivery and service 

[49]. Other research incorporates order quantities and capacity constraints into the sup-

plier selection decision making process [50, 51]. Methods include the analytical hierarchy 

process, goal programming, data envelopment, fuzzy set theory, genetic algorithms, and 

others [52, 53, 54, 55, 56, 57, 58, 59]. However, consideration for the impact on business 

objectives is lacking [60]. 

The area of supply chain disruption has been studied extensively. Blackhurst et al. [61] 

identified discovery, recovery, and redesign as the three primary areas crucial to manag-

ing supply chain disruptions. Among other conclusions, the authors point out that tools 

are needed to establish a regular system of supply chain disruption predictability and that 

dynamic or real-time measures are important. 

Disruptive threats such as terrorism [62, 63], natural disasters [64], sourcing decisions 

[65], demand [66, 67, 68], and others are discussed in the literature as well as strate-

gic frameworks and supply chain design methodologies [69, 70, 71, 72, 73] by which to 

manage and mitigate those threats. Work by researchers such as Snyder [74] and Cui [21] 

present models that consider risk in facility location as a method of risk management within 

supply chains. Inventory buffers [75, 36, 69, 73] and product mix [76] are also discussed 

as mitigating strategies against disruptions. Lastly, the empirical data resulting from the 

consequences of environmental disruptions such as the earthquake and tsunami that struck 

Japan in 2011 have been studied and models developed [77, 78]. 

Fault tree analysis was originally developed by Bell Telephone Laboratories to evalu-

ate the launch control system of the Minuteman Missile in 1961 [79, 80]. The method is 
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objective and resolves highly complex systems into a prioritized set of causes leading to 

the top event (failure). Fault trees are helpful in analyzing different ways in which a par-

ticular failure can occur and the probability of its occurrence [81, 82]. Since its inception, 

fault tree analysis has become an accepted means for understanding hazards and failures 

associated with complex systems. However, the specific application to risk identification 

and interdiction within a supply chain is scarce. Klimov and Merkuryev [83] propose a 

quantitative approach to supply chain risk identification using a combination of reliability 

theory and simulation. However, their approach results in the probability of survival for 

the supply chain being studied for a specified period of time. 

Traditionally, the application of fault tree analysis focuses on process or product fail-

ures with the purpose of identifying safety or reliability issues within the system being 

studied [80, 84, 85, 86, 87, 88, 89, 90, 91, 92] or may reference an element of the supply 

chain as part of the larger system being studied as an event within the fault tree [93]. Other 

authors [42, 33, 39, 94] note fault tree analysis as a tool for risk analysis within a supply 

chain; however, do not develop the concept in great detail. Where fault trees have been 

used to identify risk within a supply chain, the events that may occur within the supply 

chain are represented in aggregate and not developed to the level of detail of individual 

suppliers within the network [95, 96, 97, 47]. For example, Yuhua and Datao incorporate 

the physical means by which an oil pipeline may fail subsequently leading to a disruption 

in the oil and gas transmission industry, but do not include an assessment of other factors 

that may cause a supply chain disruption. Volkanovski et al. use a similar approach in their 

assessment of power system transmission reliability. In their assessment of drinking water 
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distribution systems, Lindhe et al. take a slightly different approach using the categories 

of failure within three subsystems to illustrate supply failures in terms of quantity as well 

as quality. Aqlan and Lam propose the use of fault tree analysis and event tree analysis as 

part of bow tie analysis, but do not construct specific fault trees. Often and especially when 

empirical data is not available, judgmental assessments [94] are made to estimate failure 

rates and probabilities when fault tree analysis is used in supply chain risk mitigation. This 

can lead to decisions that are less transparent to management and can be based on opinions 

rather than facts. Further, using surveys and interviews to estimate the necessary data can 

be time consuming. 

Fault tree analysis is a well-known tool for quantifying and mitigating risk. Some 

people have applied fault tree analysis to supply chains. However, there are some gaps 

related to the manner in which the fault tree is constructed and the data used in analyzing 

the fault tree. In this research, we seek to develop an approach that closes these gaps 

by generating a fault tree based on information that is readily available to analysts such 

as bills of material and historical data that describes supplier performance. An approach 

like this allows a user to be explicit about defining the fault tree events and probabilities, 

making the fault tree itself more transparent. Toward this end, we present a method for 

constructing a fault tree based on a critical component’s bill of materials that represents 

the risks associated with individual suppliers within a supply chain using historical data as 

a basis for unreliability measures. Such an approach lends itself to being automated and 

results in more timely decision making. 
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2.1.3 Contributions 

The approach described herein proposes a new application of fault tree analysis and 

in doing so provides a structured approach to represent the risks associated with sourc-

ing decisions and specifically supplier selection. The methodology is based on empirical 

data sets that represent supplier performance and provides practitioners a decision support 

methodology to assist in supplier selection and make trade-offs between risk reduction and 

the costs associated with reducing such risks. Additionally, the output enables effective 

and proactive risk mitigation actions to be deployed cost effectively to suppliers with the 

greatest risk exposure across the company’s aggregate supply chain. Specifically, this re-

search builds upon previous work in the areas of fault tree analysis and supply chain risk 

mitigation by making the following main contributions. (1) A new methodology to for-

mulate a fault tree using the bill of materials of a LVHV product being manufactured is 

demonstrated and subsequently utilized to quantify risk (unreliability) within the firm’s 

supply chain. The data used to formulate the fault tree is based on real-world scenar-

ios and hypothetical on-time delivery data that is readily available to most firms. (2) A 

quantitative approach is employed to model the trade-off between risk reduction and the 

investment required to mitigate risks within the supply chain being studied. The develop-

ment of time functions and associated costs are computed and subsequently combined with 

the results of the fault tree analysis to provide the sourcing practitioner a methodology for 

risk-informed, cost-effective decision making. (3) A set of computational experiments in 

the form of simple scenarios provides results for decision makers to better understand the 

tradeoffs between risk reduction and total risk mitigation costs. 
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2.2 Problem Description 

The purpose of the methodology described is to compute supply chain risk using fault 

tree analysis and subsequently model alternative decisions in order to take better risk-

informed actions regarding supplier selection and cost effective risk mitigation. In order to 

explain this methodology, we divide its formulation into two stages: (1) fault tree formula-

tion and (2) risk mitigation activities, which are described in greater detail in the sections 

that follow. 

In its basic form, a supply chain is a system of firms connected to one another through 

relationships and physical transportation networks. Specifically, as Christopher [98] points 

out, a supply chain is a “network of organizations that are involved, through upstream and 

downstream linkages, in the different processes and activities that produce value in the 

form of products and services delivered to the ultimate consumer.” Fault tree analysis is 

a well-known method to analyze the reliability of systems and translates physical systems 

into a structured logic diagram, in which certain specified causes lead to one specific top 

event of interest [99]. Thus, our methodology is based on the ability to represent the system 

of firms and products being sourced from those firms within a supply chain as a fault tree in 

the same way that someone may analyze the reliability of a nuclear power plant or chemical 

processing facility by analyzing the underlying components and systems. 

2.2.1 Fault Tree Formulation 

In a fault tree, the main failure event of interest is called the top event [100]. For the 

purposes of the approach described in this chapter, the top event in the fault tree represents 
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the probability that a product will not be delivered on-time as the result of subsequent 

failures by suppliers of goods and/or services within the supply chain. From the top event, 

the fault tree is developed into intermediate and basic events and is based on the bill of 

material structure of the product being studied. 

In this research, we use the term unreliability to describe a supplier’s failure to deliver 

a given product or service on-time. Specifically, unreliability is defined as the inability 

for a supplier to perform as intended (i.e., deliver on-time) for a specified period of time 

[101]. In other words, unreliability (F (t)) is the probability that the system experiences at 

least one failure during a specified time period, which is within the interval [0, t] where t = 

52 weeks. Reliability (R(t)) is the probability that the supplier makes all of its deliveries 

on time within the time interval and is related to unreliability through the relationship 

R(t) +  F (t) = 1  (where R(t) 2 [0, 1], F (t) 2 [0, 1]). Historical delivery data is used to 

compute the unreliability of delivering on-time and is discussed later. 

Further, we assume that the failures that occur within the supply chain and that subse-

quently lead to the unreliability of delivering products and services on-time are instanta-

neous and repairable as opposed to unrepairable (i.e., catastrophic) in nature. We do not 

take into consideration the duration of time to get the event under repair back into working 

condition and leave these topics to explore in the future. As a result of these assumptions, 

the use of unreliability is appropriate. 

A thrust bearing is used to illustrate the concept (see Figure 2.1) and is representative 

of a LVHV industry. However, the product selected could have been the electric motor 

assembly that houses the thrust bearing or in a more complex fashion, a product that utilizes 
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a motor within its fabrication (i.e., an aircraft, a building, a ship, etc.). In that case, the 

motor would be shown as a sub-assembly on that product’s bill of materials. 

The thrust bearing, which is a common assembly used in the manufacture of electri-

cal and mechanical devices is broken down into its main subcomponents - thrust shoes, 

brackets, leveling links, and support rings. Each subcomponent is then subsequently de-

composed into the most basic goods and services (hereafter referred to as “basic services”) 

used in their respective manufacturing processes. The most elemental basic services that 

comprise the subcomponent (i.e., melt stock, casting, machining, etc.) are basic events 

within the fault tree. These basic events combine to form intermediate events, which cor-

respond to the subcomponents (i.e., thrust shoes, brackets, etc.) that make up the product 

being studied and are represented by the top event in the fault tree. Each basic and inter-

mediate event is described by the unreliability of the respective supplier chosen to provide 

the required service on-time. Specifically, fij (t) represents the probability that the supplier 

has failed to deliver their respective service on-time within the interval [0, t]. For simpli-

fication, we will use the notation fij to describe the unreliability of supplier i to deliver 

service j hereafter; it is assumed that t = 52  weeks (one year). 
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Figure 2.1: Thrust bearing bill of material. 

After the product’s bill of material has been deconstructed into basic services, suppliers 

are selected. For the thrust bearing example described above, the supply chain consists of 

seven (i 2 [1, 7]) basic services sourced from 28 (j 2 [1, 28]) independent suppliers. In the 

case studies presented later, we will introduce two additional suppliers whose data will be 

described further. Table 2.1 summarizes the basic services used to manufacture the thrust 

bearing. 

Table 2.1: Thrust bearing basic services. 

Basic Service Basic Service Index (i) 
Casting 1 
Forging 2 
Heat Treatment 3 
Laboratory and Test 4 
Machining 5 
Melt Stock 6 
Plating 7 
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�

Historical performance data associated with each supplier’s ability to supply the re-

spective basic service on-time is used to formulate the unreliability measure (fij ) and is 

described in Equation (2.1). Table 2.2 summarizes the probability that each supplier fails 

to deliver the respective service on-time. 

P 
ij xij

fij = 1  P (2.1) 
ij yij 

where 

fij = annualized unreliability for basic service i sourced from supplier j 

xij = annualized units of basic service i delivered on-time by supplier j 

yij = units of basic service i expected annually by supplier j 

fij 2 [0, 1] 

xij 2 [0,1] 

yij 2 [1,1] 

i 2 [1, n] 

j 2 [1,m] 

n = total number of basic services within supply chain 

m = total number of suppliers within supply chain 
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Table 2.2: Combined basic service and supplier unreliability data. 

Basic Service Basic Service Index (i) Supplier (j) Unreliability (fij ) 
Plating 7 1 0.0134 
Laboratory and Test 4 2 0.0337 
Machining 5 3 0.0247 
Casting 1 4 0.0523 
Forging 2 5 0.0889 
Laboratory and Test 4 6 0.0260 
Heat Treatment 3 7 0.0133 
Machining 5 8 0.0125 
Casting 1 9 0.1215 
Laboratory and Test 4 10 0.0420 
Heat Treatment 3 11 0.0150 
Machining 5 12 0.0125 
Casting 1 13 0.1263 
Laboratory and Test 4 14 0.0393 
Heat Treatment 3 15 0.0189 
Machining 5 16 0.0224 
Casting 1 17 0.0968 
Forging 2 18 0.0820 
Heat Treatment 3 19 0.0282 
Melt Stock 6 20 0.0092 
Laboratory and Test 4 21 0.0142 
Melt Stock 6 22 0.0123 
Laboratory and Test 4 23 0.0417 
Melt Stock 6 24 0.0251 
Laboratory and Test 4 25 0.0327 
Melt Stock 6 26 0.0212 
Laboratory and Test 4 27 0.0421 

In its basic form, the fault tree is a logic diagram that depicts events that must occur 

in order for subsequent events to occur. A fault tree is composed of entities known as 

gates that serve to permit or inhibit the passage of fault logic up the tree and show the 

relationships of events needed for a higher event (output of the gate) to occur [102]. Since 

gates relate events within the fault tree in the same way as Boolean operations, the rules of 
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Boolean Algebra apply. Two types of gates are used - AND gates and OR gates. AND gates 

represent the intersection of the events attached to the gate and are used to demonstrate 

situations whereby redundant suppliers are employed. The output failure associated with 

an AND gate occurs only if all of the input events to that gate fail; whereas, if at least one 

of the events that are an input to an OR gate fail, the output event of that gate also fails. 

OR gates represent conditions where only one supplier is supplying a given basic service 

and if that supplier should fail to deliver on-time, a disruption to the supply chain occurs 

resulting in a failure to deliver the final product (i.e., trust bearing) on-time. 

Equations (2.2) and (2.3) describe the formulae used in the calculation of OR and AND 

OR AND gate probabilities, gk and gk respectively. By assuming that basic and intermediate 

input events and the respective unreliabilities are independent of one another, we are able 

to utilize the bottom-up gate calculation method in calculating the top-event failure rate. 

We achieve independence of events by assuming that each supplier of one basic service 

is independent of all other suppliers of basic services within the supply chain. Further, 

failures to deliver services on-time within the supply chain are exclusive to individual 

suppliers and are not correlated between suppliers. For example, a catastrophic event that 

impacts a geographic region and includes multiple suppliers is not considered here and 

is left for future research. Without these assumptions, the minimal cut set approach for 

analyzing fault trees is more appropriate [103]. 
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� �OR gk = 1  
Y 

(1 fij ) 

AND gk = 
i,j Y 

fij 
i,j 

(2.2) 

(2.3) 

where 

gk
OR = the gate unreliability of OR gate k 

gk
AND = the gate unreliability of AND gate k 

k 2 [1, q] 

q = the total number of gates within the fault tree 

k = 1 for top event gate 

The resulting output of the fault tree is the system unreliability (FS ), which corresponds 

to the top gate calculation in the fault tree (k = 1) and is analogous to the probability that 

the product being studied (i.e., thrust bearing) will not be delivered on-time. Subsequently, 

the system-level measures are used to determine the effect of making changes to lower 

level events within the fault tree, which correspond to sourcing decisions within the supply 

chain. Further, we consider the costs associated with these decisions in relation to their 

favorable or unfavorable impact on the system level risk. In the sections that follow, we 
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demonstrate this generalized concept through illustrative examples, but first we discuss the 

cost basis for formulating the risk-mitigation decisions using the proposed methodology. 

Figure 2.2 illustrates the baseline case of the fault tree that describes the supply chain 

associated with the manufacture of a thrust bearing and Table 2.3 contains the correspond-

ing gate unreliability data. All gates within this scenario are represented by OR gates and 

result in an overall system unreliability (FS ) of 0.6692. Initially, there is no redundancy in 

this system. Later, we introduce redundancy in the form of multiple suppliers for a given 

commodity using AND gates. Using the aforementioned definition of unreliability, this 

supply chain has a 66.92% probability that the system will experience at least one failure 

to deliver on-time within a one-year time frame. 
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Figure 2.2: Baseline fault tree. 
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Table 2.3: Baseline gate unreliability results. 

Gate Number (k) Gate Type OR AN D Gate Unreliability (g , g )k k 

1 OR 0.6692 
2 OR 0.2463 
3 OR 0.0466 
4 OR 0.2094 
5 OR 0.2250 
6 OR 0.2331 
7 OR 0.2615 
8 OR 0.1774 
9 OR 0.0389 
10 OR 0.1788 
11 OR 0.0563 
12 OR 0.1864 
13 OR 0.0574 
14 OR 0.2400 
15 OR 0.0233 
16 OR 0.0535 
17 OR 0.0570 
18 OR 0.0624 

In order to demonstrate the efficacy of the approach described, we have provided a 

simplified model and base the model on the following simplifying assumptions: 

1. Independent Events. The events used to build the fault trees presented are assumed 
to be independent. As a result, the success or failure of one supplier to deliver a 
product or service on-time is independent of any other success or failure within the 
fault tree. We achieve this by assuming that all products and services are sourced 
from different suppliers. In doing so, we are able to use the simplified gate-based 
approach to calculate the top event failure rate and probability. 

2. Repairable System. A repairable system is one in which conditions exist such that a 
failure, when occurring to a basic event, is announced, quickly detected and the sys-
tem continues to operate with a known failure [100]. In the context of this research, 
we have chosen to treat the supply chain being studied as a repairable system mostly 
because any individual supplier would most likely continue operations throughout 
the failure to deliver. This is practical since for LVHV supply chains, the switching 
cost is significant. Although we have chosen to note the system as repairable, there is 
no practical impact to our analysis since we have chosen to utilize gate calculations 
and have not used minimal cut sets in our analysis. 
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3. Unreliability. Unreliability is chosen as the parameter to assess risk within a supply 
chain more specifically and is defined as the probability the fault event occurs during 
a specified time interval, usually 0 to t [100]. This parameter is appropriate given 
that unreliability is used to describe the probability that the product will be deliv-
ered late during a one year time horizon. The unreliability parameter alone does not 
account for the effect that the failure has on the length of the delay caused by the dis-
ruption and is of greater consequence when analyzing the effectiveness of redundant 
cases (AND gates) within the system. 

2.2.2 Risk Mitigation Costs 

In addition to the calculated risk metrics that result from the fault trees (e.g., unreliabil-

ity), we have also chosen to introduce cost measures to help the analyst compute the cost 

effectiveness of various risk mitigating actions. Four cost-based decisions to mitigate risk 

within the supply base are considered and are based on the time associated with executing 

the respective activity. The time functions presented are a function of the supplier’s unreli-

ability or change (improvement) in unreliability. The time functions were derived using a 

line-of-best-fit approach and based on data sets from industry examples. Equations (2.4), 

(2.5), and (2.6) describe the time to (1) improve a supplier (Equation (2.4)), (2) onboard 

a supplier (Equation (2.5)), and (3) provide oversight at a supplier (Equation (2.6)). The 

appropriate time function is applied to each of four potential decisions to mitigate risk: (1) 

add a new supplier, (2) replace the existing supplier with an improved supplier, (3) improve 

the existing supplier, and (4) provide oversight for a supplier. An hourly rate of $104 per 

hour is used to calculate the associated costs from each time function and is considered 

representative of the fully burdened rate for an Engineer in the United States [104] for a 

LVHV industry. The models are annualized for comparison purposes and travel costs and 

other expenses are not included in the cost estimate. Table 2.4 summarizes the time func-
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tions used for each of the risk mitigating decisions and demonstrates the cost calculation 

for each. These functions are subsequently used to predict the costs associated with the 

aforementioned risk mitigation activities within the supply chain. 

improve 1.84t ij = 4278u , (2.4) 

onboard 3.83fijt ij = 43e , (2.5) 

oversight 2.64fijt ij = 23e , (2.6) 

fij,S2 u = 1  (2.7)
fij,S1 

where: 

improve t ij = time (hours) invested annually to improve a supplier, 

onboard t ij = time (hours) invested annually to onboard a supplier, 

oversight t ij = time (hours) invested annually to provide oversight to maintain supplier, 

u = unreliability improvement ratio from s1 to s2, 

e t 2.71828 

s1 = initial state of unreliability of supplier j to deliver basic service i, 

s2 = improved state of unreliability of supplier j to deliver basic service i, 

fij,S1 > fij,S2 
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Table 2.4: Costs as a function of time for risk mitigation actions. 

Risk Mitigating Action Cost Calculation 
Add a new supplier 
Replace existing supplier with an improved supplier 
Improve existing supplier 
Provide supplier oversight to maintain performance 

c 
c 
c 
c 

onboard = $104 ⇤ t ij 
onboard = $104 ⇤ t ij 
improve = $104 ⇤ t ij 
oversight = $104 ⇤ ij 

onboard 
ij 
onboard 
ij
improve 
ij
oversight t ij 

Using Equations (2.4), (2.5), and (2.6) in combination with Table 2.4, costs to mitigate 

risk are estimated. For example, reducing the unreliability (i.e., improve reliability of 

on-time delivery) of a casting supplier (j = 13; see Table 2.2) from 0.1263 to 0.0947 

(25% reduction) results in an improvement ratio (Equation (2.7)) of u = 0.25. Using 

Equation (2.4), the time required to reduce this particular casting supplier’s unreliability 

by 25% is 334.3 hours and subsequently costs the firm $34,763 using the information 

described in Table 2.4. If that same casting supplier (j = 13) was replaced by a casting 

supplier with an unreliability of 0.0947, the time to onboard (Equation (2.5)) the new 

supplier is 61.8 hours, which corresponds to a cost of $6,427. Similarly, using Equation 

(2.6), implementing additional oversight activities at the existing casting supplier (f1,13) to 

maintain their current performance results in an estimated time commitment of 32.1 hours 

and corresponds to an annual cost of $3,339. In contrast, adding a redundant supplier 

with equivalent unreliability as the initial casting supplier (f1,13 = 0.1263) costs the firm 

approximately $7,254 (69.8 hours). Comparing the aforementioned risk mitigation options 

solely based on cost, the least expensive solution is to provide additional oversight at the 

existing supplier, which is standard industry practice. However, this is a short-sighted 

approach since the impact of the decision to the overall improvement (reduction) to the 
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reliability (unreliability) of the supply chain is not considered when compared against the 

other more costly alternatives. This concept is explored further in the sections that follow 

by combining the costs of mitigation activities with the impact of those activities to risk 

reduction in the supply chain using fault tree analysis. 

2.3 Risk Mitigation Scenarios 

This section describes case studies to illustrate contributions of this work and demon-

strate how sourcing professionals may use such an instrument to determine the scenarios, 

risks, and subsequent risk mitigation plans prior to order placement with the intent of se-

lecting suppliers and combinations of suppliers that optimize their supply chain portfolio. 

In the course of building each simple scenario, we introduce a second supplier for one 

commodity, an improved supplier for one commodity, and an improved second supplier 

for one commodity. Next, we analyze the effect that each of these scenarios has on the sys-

tem. In each case, we maintain the assumption that all sources of supply are independent, 

that a new supplier can begin producing in the same timeframe as an existing supplier, and 

that initial demand is level-loaded between the two suppliers to hedge risk. 

The case described by the fault tree in Figure 2.2 is used as the baseline scenario. Table 

2.2 includes the event data used as input to the fault tree and is updated accordingly for 

each scenario discussed. 

2.3.1 Scenario 1: Introduce a Second Equivalent Supplier 

In this first scenario, we introduce a second casting supplier (j = 28) in the manufacture 

of the thrust bearing leveling links with an equivalent unreliability (f1,13 = f1,28 = 0.1263) 
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as the existing casting supplier (j = 13). Within the fault tree, the two suppliers become 

inputs to a new gate (k = 19), which is an AND gate. We have selected to introduce a 

second source for this supplier and commodity combination because the existing casting 

supplier has the highest unreliability of any other supplier in the supply chain (0.1263). 

The addition of a second equivalent casting source results in a total system unreliability of 

0.6274 (FS = 0.6274) compared to the baseline case where FS = 0.6692 and corresponds 

to an approximate 6.2% reduction in the risk of the supply chain. However, the action 

of adding an equivalently unreliable supplier comes at a cost of $7,254 (Equation (2.5), 

Table 2.4). Table 2.5 includes the data associated with the second casting supplier. Figure 

2.3 shows the section of the baseline fault tree that has been updated as a result of the 

addition of the second casting source and Table 2.6 contains the corresponding data. All 

other aspects of the fault tree architecture remain the same. 

Table 2.5: Second casting source (j = 28) data table. 

System 
Basic Service Unreliability Unreliability Mitigation 

Description (i) Supplier (j) (fij ) (FS ) Cost 
Casting 1 28 0.1263 0.6274 $7,254 
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Figure 2.3: Modification to baseline fault tree architecture for Scenario 1. 

Table 2.6: Gate unreliability results updated for Scenario 1. 

Gate Number (k) Gate Type OR AN D Gate Unreliability (g , g )k k 

1 OR 0.6274 
2 OR 0.2463 
3 OR 0.0466 
4 OR 0.2094 
5 OR 0.2250 
6 OR 0.1363 
7 OR 0.2615 
8 OR 0.1774 
9 OR 0.0389 
10 OR 0.1788 
11 OR 0.0563 
12 OR 0.0837 
13 OR 0.0574 
14 OR 0.2400 
15 OR 0.0233 
16 OR 0.0535 
17 OR 0.0570 
18 OR 0.0624 
19 AND 0.0160 

37 



www.manaraa.com

2.3.2 Scenario 2: Improve (or Replace) the Existing Supplier 

In the second scenario, instead of utilizing a second source to reduce risk with the 

highest risk supplier, we instead decide to work with the same casting supplier (j = 13) 

to improve their performance by 25%. As a result, the fault tree architecture remains the 

same as the baseline case (see Figure 2.2). However, the supplier’s unreliability (f1,13) is 

reduced by 25% (from 0.1263 to 0.0947). Table 2.8 shows the updated gate calculation 

results for Scenario 2. Using Equation (2.4) and the information contained in Table 2.4, 

improving the existing casting supplier comes with an annual cost of $34,763. We will 

discuss the impact of these costs in the subsequent section and will see that the effects 

on the overall risk profile will remain the same as if we replaced the existing supplier 

with an improved supplier. However, the cost to develop a new, improved casting source 

(f1,29 = 0.0947) to replace the existing supplier is $6,427 (Equation (2.5) and Table 2.4). 

Hereafter, we will reference the case when the existing supplier is improved as Scenario 

2a and the case when the existing supplier is replaced as Scenario 2b when analyzing the 

associated costs. Table 2.7 includes the updated input data used in calculating the top 

event unreliability for the fault tree associated with Scenario 2. Overall, the impact to the 

system is equivalent for Scenario 2a and Scenario 2b (FS = 0.6572) and corresponds to 

an approximately 1.8% reduction in the overall system unreliability when compared to the 

baseline case (FS = 0.6692). 
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Table 2.7: Improve (or Replace) existing casting source (j = 13) data table. 

System 
Basic Service Unreliability Unreliability Mitigation 

Description (i) Supplier (j) (fij ) (FS ) Cost 
Casting 1 13 0.0947 0.6572 $34,763 
Casting 1 29 0.0947 0.6572 $6,427 

Table 2.8: Gate unreliability results updated for Scenario 2. 

Gate Number (k) Gate Type OR AND Gate Unreliability (g , g )k k 

1 OR 0.6572 
2 OR 0.2463 
3 OR 0.0466 
4 OR 0.2094 
5 OR 0.2250 
6 OR 0.2054 
7 OR 0.2615 
8 OR 0.1774 
9 OR 0.0389 
10 OR 0.1788 
11 OR 0.0563 
12 OR 0.1570 
13 OR 0.0574 
14 OR 0.2400 
15 OR 0.0233 
16 OR 0.0535 
17 OR 0.0570 
18 OR 0.0624 

2.3.3 Scenario 3: Introduce a Second Improved Supplier 

In the third scenario, we essentially combine the two previous scenarios to determine 

the effect on the system of introducing a second casting supplier (j = 30) with better 

performance than the initial casting supplier (j = 13). Like in Scenario 2, we assume the 

improvement is equal to 25%. The fault tree architecture remains the same as in Scenario 
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1 with modification to the unreliability data and resulting gate calculations (see Figure 2.4 

and Table 2.10). Similar to Scenario 1, costs are incurred by bringing on this new supplier. 

However, since the supplier (j = 30) has a track record of 25% improvement performance 

over the initial supplier (j = 13), the on boarding and development cost is less ($6,427). 

The data used in fault tree calculations for Scenario 3 are included in Table 2.9. Overall, 

the risk mitigating actions taken in Scenario 3 result in an approximately 6.5% reduction 

in system unreliability. 

Table 2.9: Improved second casting source data table. 

System 
Basic Service Unreliability Unreliability Mitigation 

Description (i) Supplier (j) (fij ) (FS ) Cost 
Casting 1 30 0.0947 0.6259 $6,427 

Figure 2.4: Modification to baseline fault tree architecture for Scenario 3. 
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Table 2.10: Gate unreliability results updated for Scenario 3. 

Gate Number (k) Gate Type OR AN D Gate Unreliability (g , g )k k 

1 OR 0.6259 
2 OR 0.2463 
3 OR 0.0466 
4 OR 0.2094 
5 OR 0.2250 
6 OR 0.1328 
7 OR 0.2615 
8 OR 0.1774 
9 OR 0.0389 
10 OR 0.1788 
11 OR 0.0563 
12 OR 0.0800 
13 OR 0.0574 
14 OR 0.2400 
15 OR 0.0233 
16 OR 0.0535 
17 OR 0.0570 
18 OR 0.0624 
19 AND 0.0120 

2.3.4 Summary 

Table 2.11 includes the output of the fault trees constructed for each of the scenarios 

presented and the corresponding estimated costs of mitigating the associated risks. Figure 

2.5 illustrates the trade-off between the reduction in risk for each scenario from the baseline 

case and the corresponding cost to mitigate the risk. 

According to the cost model presented, oversight for the existing casting supplier 

(f1,13 = 0.1263) costs the firm $3,339 annually and is only assumed to maintain the sup-

plier’s current level of unreliability. As a result, the oversight carrying cost of $3,339 is 

included in the total mitigation costs of Scenarios 0, 1 and 3. Often, LVHV industries like 

those described above use oversight as the primary means in providing a sense of assurance 
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in mitigating risks. However, this oversight is primarily compliance-based and targets only 

whether or not the firm is adhering to their standard operating procedures and does not 

address the effectiveness or efficiency in the firm’s ability to do so. As a result, oversight 

activities do not serve to reduce the firm’s unreliability, but at best can only be expected to 

maintain the current state. Any improvements yielded as a result of oversight are only re-

lated to correcting deficiencies at the firm regarding compliance to their standard operating 

procedures. 

Table 2.11: Summary of results. 

System System 

Unreliability Scenario Total Mitigation Unreliability 

Scenario Decision (FS ) Mitigation Cost Cost Improvement 

0 Baseline 0.6692 $3,339 $3,339 – 

1 Second Equivalent Supplier 0.6274 $7,254 $10,593 6.2% 

2a Improve the Existing Supplier 0.6572 $34,763 $34,763 1.8% 

2b Replace the Existing Supplier 0.6572 $6,427 $6,427 1.8% 

3 Second Improved Supplier 0.6259 $6,427 $9,766 6.5% 
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Figure 2.5: Tradeoff between risk reduction and mitigation costs for reducing risk. 

Introducing a second equivalently performing casting supplier (Scenario 1) provides 

a 6.2% improvement in the system reliability. However, doing so will cause the firm to 

outlay an additional $7,254 in mitigation costs beyond the cost of maintaining the existing 

supplier ($3,339) for a total mitigation cost of $10,593. Improving the existing supplier 

(Scenario 2a) or replacing the existing supplier with an improved supplier (Scenario 2b) 

provides the least reduction in the supply chain’s risk, 1.8%, and comes with costs of 

$34,763 and $6,427 respectively. The scenario that introduces a second, yet improved, 

casting supplier (Scenario 3) appears to provide the greatest reduction in the risk within 

the supply chain (6.5%) and at an equivalent cost as replacing the existing supplier with 

an improved supplier ($6,427). However, since in this scenario the existing supplier will 

remain, their carrying cost must be considered. Thus, the total mitigation cost for Scenario 

3 is $9,766. Even after the total cost of mitigation is considered, adding a second improved 

43 



www.manaraa.com

casting supplier provides greater unreliability improvement (6.5% vs. 6.2%) at less cost 

($10,593 vs. $9,766) than introducing a second equivalently unreliable casting supplier as 

the original. 

In summary, since Scenarios 1 and 2a are more expensive when compared to Scenarios 

2b and 3, they would be eliminated from consideration by decision makers on the basis 

of cost as risk mitigation strategies. Although Scenario 2b is less expensive than Scenario 

3, the relative risk reduction is minimal by comparison. As a result, Scenario 3 should be 

chosen as the risk mitigation strategy. 

2.4 Conclusions and Future Work 

In this chapter we presented a new application for fault tree analysis that has the poten-

tial of providing sourcing professionals an instrument to build scenarios and make better 

informed decisions. In doing so, we studied the supply chain of a thrust bearing used in 

an application within a LVHV supply chain. This type of supply chain provides one of the 

biggest opportunities to employ such an instrument due to the associated risks, long lead 

times, and value of the products being manufactured and constructed. We presented simple 

case studies to provide examples of how such an instrument could be beneficial and then 

analyzed the results. 

Experiments using the methodology illustrated that introducing a redundant supplier 

with improved performance provided the greatest reduction in overall risk at a slightly 

lower total cost than adding an equivalently unreliable supplier. The assessment methodol-

ogy allows the practitioner to quantitatively and objectively distinguish between seemingly 
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similar options to reduce risk. Thus, less attractive options such as introducing a second 

equivalent supplier, improving the existing supplier, providing additional oversight at the 

existing supplier or replacing the existing supplier may also have been considered as effec-

tive at first glance, can be objectively analyzed using our method. 

Several areas of future work are planned. The first entails the development of a soft-

ware instrument that has the capability to perform the tasks outlined in this research in an 

automated fashion. Such tasks include development of the fault tree from the bill of mate-

rial, calculation of failure rates and probability, and selection of an optimized scenario of 

risk reduction and cost under budgetary constraints. The second includes refinement and 

sensitivity analysis with regard to the underlying risk and cost data as well as the associ-

ated models used to produce the results presented here. Third, it would be interesting and 

useful to further explore several assumptions used in developing our model. For example, 

the approach presented assumes that the performance of a supplier is known at the time of 

decision-making. However, this may not be the case in practice such as when a supplier 

is new to the firm interested in sourcing product or rendering services from them. The 

relaxation of the independence assumption as well as the integration of risk severity and 

consequence into the methodology presented here is left for future research. Additionally, 

event dependence and the use of minimal cut set analysis in lieu of the simplified gate cal-

culation approach employed would be useful areas to explore further. Lastly, consideration 

for unrepairable events, the unavailability of a supplier’s services, and duration of delays 

due to failure and start-up will be considered. 
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CHAPTER 3 

IDENTIFYING AND MITIGATING SUPPLY CHAIN RISKS USING FAULT TREE 

OPTIMIZATION 

3.1 Introduction 

Firms that produce a low volume of high value goods with long lead times experi-

ence risk in a more significant way. According to the World Nuclear Association (www. 

world-nuclear.org), building a nuclear power plant costs as much as $14 billion and 

takes more than 5 years to complete. Delays to complete the project can cost $1.2 million 

per day. In addition, the effort is quite complex. Construction of a nuclear power plant 

relies on more than 5,000 individual components that are sourced from hundreds of global 

suppliers. 

For example, the purchase order for a forging may be placed two years in advance of 

it being used in the manufacture of a thrust bearing used in a nuclear power plant. This 

lengthy lead time is necessary in order to account for raw material lead times as well as 

the production schedule for the forger, which may be only one of a few in the world with 

the requisite equipment and qualifications to make the forging. If a problem is discovered 

with the forging at a late stage of manufacturing or delays are experienced due to labor, 

equipment, or quality problems with the forger or their raw material sources, the cascad-

ing effect can be significant. Long lead times, demand for increasingly scarce capabilities, 
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and fewer and fewer suppliers that are qualified to meet the stringent requirements create 

significant risk for firms within the nuclear power plant construction supply chain. These 

risks are confounded due to the low volume, costly barriers to entry, and relatively infre-

quent demand, which decentivizes new firms from participating in the supply chain. Thus, 

LVHV firms like those in the nuclear industry are especially vulnerable to supply chain 

risks. 

Supply chain risk management (SCRM), which is already an extensively studied topic, 

recently became a popular area of interest because supply chains are experiencing greater 

exposure to risk. This greater risk is the result of recent changes in how businesses are 

being managed. Juttner et al [6] identified the following business practices that have con-

tributed to these increased risks: (1) a focus on efficiency rather than effectiveness, (2) 

supply chain globalization, (3) focused factories and centralized distribution, (4) a trend 

toward outsourcing, and (5) reduction of the supply base. Many industries, including those 

comprised of LVHV supply chains, have experienced an increase in supply chain risks as 

a result of these practices. 

As a result, an opportunity exists for the development of a quantitative approach that 

considers all suppliers within the supply chain as a portfolio and enables supply chain 

professionals with the requisite information to identify risks, select suppliers, and deploy 

risk mitigating tactics in advance of risks being realized. Some of the current literature in 

supply chain risk management addresses these topics. However, not in the same manner 

as presented here. With the advancement of enterprise resource planning systems, data-

driven decision models have the potential to be implemented in real-time, dynamically, 
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and with consideration for cost and resource constraints. The purpose of this research is 

to advance prior work by developing such data-driven models. Although all supply chains 

could benefit from such an approach, LVHV industries that have high risk exposure would 

benefit most from the proposed methods. The unique risk exposure in LVHV supply chains 

results from a scarce supply of capable providers, low quantities of demand, significant 

capital investment, and long lead times to manufacture such goods. 

This research extends the work of Sherwin et al. [105] by using a fault tree repre-

sentation of a LVHV supply chain system to determine how and where to best mitigate 

risk in the supply chain . Optimization models are developed to assist decision makers by 

identifying the most at-risk suppliers within the supply chain being studied with consid-

eration for budgetary constraints. The approach is flexible and based on the perspective 

of the decision maker. For example, a firm constructing a nuclear power plant may uti-

lize the proposed methodology just as easily as a manufacturer that produces one of the 

components that will be installed in the nuclear power plant. More specifically, the firm 

constructing the nuclear power plant may have the following items on their respective bill 

of materials - containment structure, control rods, generator, turbine, fuel rods, etc. Simi-

larly, the proposed models could be used by the manufacturer of the turbine in which case 

items such as bearings, seals, and motors that comprise the turbine would be the basis for 

the construction of the fault tree. This approach enables a system view of the supply chain 

as well as modularity for the user to include and/or exclude portions of the supply chain 

during their analysis. 
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The primary objective of this research is to construct a model that identifies supplier-

item combinations of greatest risk within a supply chain system and subsequently allocates 

scarce resources to mitigate those risks. In summary, our research solves this practical 

problem and makes the following contributions to the field of supply chain risk manage-

ment: 

1. This is the first study that addresses risk mitigation in LVHV supply chains. LVHV 
supply chains are different than high volume supply chains in that LVHV supply 
chains are more susceptible to risk given that firms with the requisite capabilities 
and qualifications are often more scarce due to significant administrative and capi-
tal barriers to entry. We utilize fault tree analysis to represent a supply chain as a 
portfolio of suppliers and services. The top-level product’s bill of materials serves as 
a basis for the fault tree. Subsequently, we derive an optimization model that min-
imizes portfolio risk and recommends actions external to the firm to mitigate risks 
with consideration for a firm’s budgetary constraints. 

2. Demonstrates the practical application of the above contribution in the form of a case 
study to a real and current problem in order to demonstrate the practical application 
of the approach in mitigating supply chain risk. 

In the next section, we present a literature review of related work followed by a formula-

tion of the models. We then apply the models to solve a problem that faces supply chain 

professionals within the nuclear power industry. The chapter concludes with a discussion 

of the results. 

3.2 Literature Review 

Since the early part of the 21st century there has been a significant increase in the 

number of published papers in the area of supply chain risk modeling [10]. The SCRM 

literature contains conceptual, quantitative, and qualitative methodologies applied to four 

primary elements of research: identification, assessment, mitigation, and responsiveness 
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[46]. In this section, we present a review of current literature in those areas of research 

most relevant to this research. 

With respect to risk identification and mitigation, Colicchia and Strozzi [106] identified 

“Complexity & Uncertainty” and “Practices & Tools for Supply Chain Risk Management” 

as two of the main themes within SCRM research. More specifically, the authors point out 

that these areas of research are moving from operational risk management to disruption 

risk management. Although several papers have been published in these areas within the 

past few years, the research has primarily focused on strategic decision making [94], site 

location selection [107, 74], inventory stocking levels [69, 65], and transportation decision 

models [108] to mitigate risk. Other research has focused on response strategies once a 

risk has been realized [109, 110]. 

Both qualitative and quantitative approaches are proposed in the literature in the areas 

of supply chain disruption, reliability, and risk management. Quantitative approaches to 

SCRM [111, 112, 94, 33, 113]focus on categorizing supply chain disruptions and analyzing 

the major causes of risk in the supply chain. Although useful, qualitative approaches can be 

biased by personal opinion, limited by personal experience, and may be more susceptible 

to error than quantitative approaches. 

In a robust review of operations research and management science models that address 

supply chain disruptions, Snyder et al. [114] placed disruptions in the context of other 

forms of supply uncertainty (yield uncertainty, capacity uncertainty, lead-time uncertainty, 

and input cost uncertainty) and discussed different models for these disruptions. The au-

thors evaluated the methods across six categories - (1) strategic decisions, (2) evaluating 
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supply disruptions, (3) sourcing decisions, (4) contracts and incentives, (5) inventory, and 

(6) facility location. With respect to the state-of-the-art in modeling disruptions, Snyder et 

al. note that most papers model disruptions in an abstract way and commonly assume that 

two states exist - normally functioning or disrupted. 

In their tutorial on models for designing supply chains resilient to disruptions, Snyder 

et. al [73] classify models for reliable supply chain design into three categories - (1) de-

sign vs. fortification, (2) underlying model, and (3) risk measure. The authors note that 

supply chain systems can often be made substantially more reliable with only small ad-

ditional investments in infrastructure and conclude that most of the existing models use 

some variation of a minimum-cost objective. Although minimizing cost is important, the 

authors suggest that reliability is important as well. The models developed throughout this 

research address these important points made by the authors. First, we include objective 

functions that seek to minimize the unreliability (maximize reliability) of the supply chain 

system being studied. Second, the models aim to provide decision makers with options to 

make investments within the supply chain to mitigate risk with consideration for budgetary 

constraints. 

With regard to strategies for mitigating disruptions, models that incorporate inventory 

control, sourcing strategies, and rerouting contingencies have been proposed [69] as a 

means to proactively mitigate risk in a quantitative fashion. Other authors have investi-

gated financial risk sharing within a supply chain via contracts, pricing, or competition 

[115, 116, 117]. Although research focused on supply chain risk management and re-

lated areas has increased in recent years, there is a need for approaches that join both ma-
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ture (e.g., tactical/operational planning, demand/supply forecasting) and emergent areas 

(e.g., sourcing/supply uncertainty modeling, sustainability risk analysis) [111, 10]. Tra-

ditional quantitative OR/MS methodologies such as mixed integer programming [74, 21, 

118, 119, 120], stochastic programming [121, 122, 123, 124, 69, 125], fuzzy optimization 

[126, 47, 127, 128, 129], and simulation [36, 83, 130] have been applied to solve the supply 

chain disruption problem quantitatively. Some quantitative approaches assess probabilities 

through surveys of experienced personnel [131, 126] in lieu of empirical data. Ivanov et al. 

[132] note that it is almost impossible to determine the probability of endemic-type risks 

such as fires, natural disasters, or piracy. Simchi-Levi et al. [133, 134] have developed a 

model to determine the impact of a disruption in the supply chain regardless of the cause 

or likelihood and use a risk-exposure model to assess the impact of disruptions originating 

in an automotive supply chain with a specific emphasis on low probability risks with high 

potential impact. Our approach is to use supplier and item historical data that is available 

from a firm’s enterprise resource planning (ERP) system to assess the overall risk of a sup-

ply chain. This alleviates the biases that are inherent with interviews and surveys as well 

as the aggregation of the data resulting from those surveys. Further, our approach is not as 

heavily weighted as other approaches are on endemic risks and instead focuses on the past 

performance of a given supplier to deliver a particular item as an indicator of future risk. In 

highly regulated, LVHV (e.g., nuclear power plant construction) where supplier turnover 

is low and the use of single and sole sources is high, this is a practical approach. 

Similar to Osadchiy et al. [135], our research develops models that analyze the im-

pact of supply network structure on risk. More specifically, Osadchiy et al. identify three 
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mechanisms that can affect the correlation between sales and the state of the economy in 

a supply chain network: propagation of systematic risk into production decisions, aggre-

gation of orders from multiple customers in a supply chain network, and aggregation of 

orders over time. The primary contribution of the research shows that systemic risk is an 

important phenomenon and is affected by supply chain structure. Our approach, based on 

the bill of materials of the product being sourced, leverages this concept by defining and 

calculating risk as a function of the structure of the supply chain being studied. 

Reliability optimization research has been important since the 1960s with a focus on 

maximizing system reliability. Approaches have varied and are primarily based on the 

system structure and optimization method. [136]. Examples of system structures include 

parallel-series systems, general network systems, and k-out-of-n systems. Optimization 

methods include redundancy allocation algorithms [137], reliability-redundancy alloca-

tion heuristics, multi-objective reliability optimization [138], and optimal assignment of 

interchangeable components. More specific examples of reliability optimization methods 

include the use of genetic algorithms [139], simulated annealing [140], and tabu search 

[141]. 

Fault tree analysis was originally developed by Bell Telephone Laboratories in 1961 

and has been used extensively in assessing and solving problems related to process hazards, 

risk, and system reliability [80]. Although fault tree analysis and reliability optimization 

are well developed areas, representing a supply chain system as a fault tree and basing the 

fault tree on the supply chain’s bill of materials is a new and novel concept that has not pre-

viously been addressed in the literature. In one paper, Klimov and Merkuryev [83] propose 

53 



www.manaraa.com

a quantitative approach to identify risks within a supply chain. In doing so, the authors use 

both reliability theory as well as simulation. However, the approach results in the proba-

bility of survival for the supply chain, but does not identify specific suppliers or individual 

items as risk mitigation focal points. In some articles, fault tree analysis is used as a tool 

for supply chain risk analysis. However, specific risks within the supply chain are repre-

sented as basic events. For example, Senol et al. [142] analyze the failures associated with 

ship transportation within a supply chain. Examples of intermediate events within the fault 

tree include structural, operational, tank cleaning, and other operational risks. In another 

paper, Aqlan and Lam [126] use fault tree analysis to analyze risks within a supply chain 

and propose sets of controllable (i.e., capacity constraints, poor planning and scheduling, 

technical limitations, design changes, quality issues, etc.) and uncontrollable risk factors 

(i.e., wars, terrorism, economic issues, etc.). However, the authors neither construct spe-

cific fault trees nor identify these risks with specific suppliers like the approach presented 

in our research. In other cases [94], where empirical data is not available, judgmental as-

sessments and polling are used to estimate probabilities associated with risks when fault 

tree analysis is applied to risk mitigation in supply chains. This approach lends itself to 

decisions that are less transparent to management, based on data that is inherent with bias, 

and time consuming to collect. We mitigate these biases and inefficiencies by introducing 

an approach that is based on empirical data available via most firms’ ERP systems and 

extends the previous work of Sherwin et al. [105] by representing a supply chain portfolio 

as a fault tree. 
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By representing the supply chain as a fault tree, the methodologies outlined in this re-

search provide a portfolio approach to supply chain risk management and demonstrate the 

overall unreliability of the system. Subsequently practitioners are able to identify risks and 

make tactical decisions at the individual supplier and item level. In addition, we convert the 

fault tree structure to a binary decision diagram in order to leverage the computational ad-

vantages and improve the accuracy of the resulting reliability parameters [143, 144, 145]. 

A holistic approach to proactively mitigate risks while considering multiple risk factors is 

another important contribution of our work and has been identified as a gap in the current 

research [146, 114]. Our approach is developed in the pages that follow and is applied 

to solve a problem in nuclear power plant construction; an industry that relies heavily on 

LVHV supply chains. 

3.3 Problem Description and Model Formulations 
3.3.1 Problem description 

The specific problem that we consider in this research is as follows. A supply chain 

manager is allocated a limited budget for reducing supply chain risk. The manager seeks to 

use resources as effectively as possible and in doing so determines the specific suppliers to 

target as the subject of mitigation activities. A supplier is mitigated by performing various 

actions (e.g., additional oversight is provided, the supplier is engaged in improvement 

activities, redundant suppliers are considered), each of which reduce the probability that 

the supplier is late and each of which costs resources. The manager seeks to minimize the 

unreliability (maximize the reliability) of the entire supply chain while staying within a 

prescribed mitigation budget. 
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We approach the problem in two ways by formulating nonlinear integer programs that 

are subsequently reformulated into linear integer programs with the aim of improving com-

putational efficiency. In both models, we use the term unreliability as a measure of risk 

and define it as the probability that a supplier will not deliver their respective good(s) or 

service(s) on-time. First, we develop a perfect mitigation model that is aimed at identify-

ing areas of the supply chain that are at-risk. The next model described, which we refer 

to as the imperfect mitigation model, extends the perfect mitigation model by identifying 

specific mitigating actions to take on specific suppliers to improve the overall reliability of 

the supply chain portfolio. 

3.3.2 Model Formulations 
3.3.2.1 Perfect Mitigation Model 

Our modeling approach is based on a fault tree structure and starts with the bill of 

materials for the supply chain of the top-level item or service being procured [105]. Later, 

we will demonstrate this methodology using two top-level items that represent the supply 

chains of two firms within the nuclear industry and specifically the construction of a nuclear 

power plant. The items are (1) a pressurized water reactor (PWR) within the nuclear power 

plant and (2) a steam turbine thrust bearing (STTB) that is a component within the nuclear 

power plant’s steam turbine. In each case the top-level item’s bill of materials is constructed 

and converted into a fault tree. Using both AND and OR gates, we are able to represent 

both multi source and single/sole source situations within the supply chain. In addition, the 

fault tree approach enables the tiers within the supply chain to be represented. Once the 
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fault tree has been formulated, we develop the perfect mitigation model by representing 

the top event of the fault tree mathematically. 

For the purposes of this research, perfect mitigation occurs when an activity is taken 

that sets the reliability of the cut set equal to 100%. In our formulation of the perfect 

mitigation model, we assume that failure events (and subsequently minimal cut sets) are 

independent. This is a practical assumption given that the factors that affect delays within 

a LVHV manufacturing supply chain have been shown not to have a high degree of cor-

relation [105]. By assuming mutually independent events, we are able to apply Boolean 

algebraic operations and calculate the probability of occurrence that at least one mode of 

failure (i.e., minimal cut set) within the fault tree will occur [81]. As a result, the probabil-

Q
ity of the top event (i.e., failure) of the fault tree can be stated as 1 i2I(1 Ui) where 

(1 Ui) is the probability that cut set i does not occur and I is the set of all minimal cut 

sets. 

The objective function (Eq. (3.1)) is formulated as a nonlinear integer program based 

on the above assumption and using the binomial decision variable xi that is 1 if minimal 

cut set i 2 I is mitigated and 0 otherwise. Cut sets are linked to basic events (suppliers) via 

the model constraints and specifically a second binomial variable yj which is 1 if supplier 

j 2 J is mitigated and 0 otherwise and J is the set of all basic events (suppliers). Ji 

represents the set of suppliers that are members of cut set i. A budget value, b, is included 

in the formulation and represents the total mitigation budget of the firm and is compared to 

the cost, cj , of mitigating supplier j. The basis for cj and its extension cjk are discussed in 
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Maximize log(1 Ui)(1 xi) 
i2I X 

s.t. xi  yj 8i 2 I 

X 
j2Ji 

cj yj  b 
j2J 

a later section. Given this notation, the objective of minimizing the supply chain reliability 

can be represented as follows: 

Y 
Minimize 1 (1 Ui)

1 xi (3.1) 
i2I 

By converting the minimization to maximization and taking the logarithm of the objec-

tive function, the perfect mitigation model is formulated as follows: 

(3.2) 

(3.3) 

(3.4) 

Equation (3.3) enforces that a minimal cut set can only be mitigated if at least one of 

its suppliers is mitigated and (3.4) enforces a budget for supplier mitigation. As mentioned 

above, this model assumes that if a supplier is mitigated then it cannot fail, an impractical 

assumption in many cases. In even the best circumstances, it is rare that a supplier will 

become perfectly reliable after completing mitigation actions. As a result, the perfect 

mitigation model computes a best-case bound and can serve as a means for practitioners to 

identify the areas of highest risk within the supply chain portfolio. 

58 



www.manaraa.com

3.3.2.2 Imperfect Mitigation Model 

Whereas the perfect mitigation model describes perfect supplier intervention, we now 

introduce an imperfect mitigation model that selects individual suppliers to mitigate within 

cut sets. In this scenario, supplier intervention reduces, but does not eliminate, the chance 

of supplier unreliability. Examples of such intervention activities that we will explore 

include taking action to improve the existing supplier’s reliability, replace the supplier 

with an improved supplier, provide additional oversight to assist the supplier, or take no 

mitigation action at all. All of the supplier-specific activities described are intended to 

have a favorable impact on the overall reliability of the supply chain system and represent 

activities that are applied in industry settings. 

For the imperfect mitigation model we convert the fault tree that represents the supply 

chain system into a binary decision diagram. This approach leverages the computational 

advantages of the binary decision diagram structure as well as more effectively models 

the problem such that individual suppliers can be identified as targets for risk mitigation 

activities that result in an overall improvement of the supply chain system reliability. 

For the purpose of this research, we apply the component connection method [147] for 

converting a fault tree into a binary decision diagram. The process consists of three primary 

steps: (1) ordering, (2) construction/connection, and (3) simplification. For basic events 

that are connected through AND gates, the corresponding nodes on the binary decision 

diagram are connected to each other through the 1 branch of the node. Alternatively, for 

basic events that are connected via OR gates, the nodes that represent the basic events on 

the binary decision diagram are connected to each other on the 0 branch of the node. Figure 
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3.1 illustrates the conversion of a simple fault tree into a binary decision diagram using the 

component connection method. In this example, the fault tree contains four basic events 

(A, B, C, and D), one OR gate (Gate 1), and one AND gate (Gate 2). The subsequent 

binary decision diagram consists of five terminal 1 node paths. 

Figure 3.1: Example of converting a fault tree to a binary decision diagram. 

The resulting binary decision diagram consists of nodes that represent basic events and 

have associated probabilities of success (reliability) and failure (unreliability). Success 

paths are connected via 0 branches and failure paths are connected via 1 branches. Paths 

consist of the sequence of connections between basic events and terminate at either a ter-

minal 1 node or a terminal 0 node and represent the cut sets within the fault tree. Paths that 

lead to a terminal 1 node specify the basic events (suppliers) for the top event (i.e., failure) 

in the fault tree to occur. If redundancies within the binary decision diagram have been 

removed, the basic events (suppliers) contained within a path terminating in a terminal 1 

node lie along the fault tree’s minimal cut sets [148]. Conversely, the paths that terminate 

in a terminal 0 node indicate top event nonoccurence (or success/reliability). 
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We define Pj,`(j,!) as the probability of supplier j in path ! with state ` where ` = 0  

if success state and ` = 1 if failed state. `(j, !) is the state of supplier j in path !. 

Hereafter, the notation Pj,`(j,!) is simplified and equivalent to Pj,!. Let ⌦ be the set of all 

terminal 1 node paths. Using the binary decision diagram approach, for a given terminal 

1 path ! we can multiply the probabilities of all suppliers contained within that path (J!) 

to obtain the probability of that path. Subsequently we can take the summation across all 

terminal 1 paths to compute the top event (system) unreliability. For the example presented 

P Q
in Figure 3.1, the resulting top event unreliability can be computed as !2⌦ j2J! 

Pj,! 

where ⌦ = {1, 2, 3, 4, 5}, J1 = {A, B}, J2 = {A, B, C}, J3 = {A, B, C, D}, J4 = 

{A, C}, J5 = {A, D}, and the probability of supplier j in path ! is a value dependent 

upon one of two states, ` = {0, 1}. 

The imperfect mitigation model (see Eq. (3.5)) is developed similarly and based on 

the binary decision diagram that has been converted from the fault tree that represents the 

supply chain structure being analyzed. The objective function is formulated as a nonlinear 

integer program, and seeks to minimize the overall unreliability of the supply chain system. 

We leverage the straightforward reliability computations of the binary decision diagram 

and introduce an index k to represent the mitigation activity performed on a supplier. More 

specifically, Pj,!,k is the probability of supplier j along path ! given mitigation activity k 

was performed on j. A binary decision variable yjk is introduced and represents whether 

or not supplier j is mitigated using action k. The selection of mitigation activity k reduces 

the probability, but does not necessarily reduce the probability to 0 and in one case defined 

later, results in no change to the probability. Subsequently, taking the summation across 
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all terminal 1 paths (! 2 ⌦) within the binary decision diagram results in the top event 

P Q Q 
Pyjkunreliability. The objective function, !2⌦ j2J! k2K j,!,k, represents the summation 

of the product of the probability of the path sets within the binary decision diagram being 

studied. 

Two constraints are incorporated into the model (see Eq. (3.6)-(3.7)). The first is a 

budgetary constraint (b). The second constraint assures that, if selected, a supplier (j) is 

only subject to one mitigation activity (k). 

In the imperfect mitigation model formulation, we extend the cost function values (cjk) 

used in Equation (3.6) specific to the mitigation activity chosen. By taking this approach, 

we are able to choose the optimal portfolio of mitigation activities to take with individual 

suppliers that minimizes the unreliability of the supply chain system being studied within 

the budgetary constraints set by the firm. We have chosen four potential mitigation ac-

tivities that are currently used within the nuclear industry to illustrate the concept in this 

research. The activities are as follows: (1) improve the existing supplier (k = 1), (2) re-

place the existing supplier with an improved supplier (k = 2), (3) increase oversight at the 

supplier (k = 3), and (4) do not take any mitigation action (k = 4). This is an advantage 

of the approach described here in that it allows for additional activities as well as the as-

sociated cost functions to be customized to the industry and supply chain portfolio being 

analyzed. Thus, the model formulation is as follows. 
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Maximize Pyjk 

j,!,k 
!2⌦ j2J! k2K X 

s.t. cjkyjk  b 
j2J X 

yjk = 1  
k2K 

(3.5) 

(3.6) 

(3.7) 

Next, we present a linearized reformulation of the imperfect mitigation model. In doing 

!so we introduce the variable wrk, which we will refer to as the partial probability associated 

with each path (!) where k is the mitigation activity select and r is the order of the supplier 

within the given path. The variable w! = Pj(1,!),`(1,!),k(1,!)Pj(2,!),`(2,!),k(2,!)...Pj(r,!),`(r,!),k(r,!)rk 

represents the probability that the first r suppliers within path ! realize the respective state 

(`) assigned to them within the path given that k is the mitigation level for rth supplier j in 

path !. Equations (3.8) - (3.13) outline the linearized reformulation of the imperfect miti-

gation model. The objective function (3.8) is the summation of the partial probability for 

the last supplier in the path across all paths in the BDD and all mitigation activities. The 

first constraint (3.9) is the probability of the first member (r = 1) of each path and incorpo-

rates the decision variable, yj(1,!),k . For each path, the second constraint (3.10) identifies 

!the rth partial probability (wrk for some value of k) as the product of the (r 1)th partial 

probability (w! 
1,k for some value of k) and the probability that the rth supplier is in state r 

` on the path (Pj(r,!),`(r,!),k(r,!) for some value of k); this “chain” starts with the second 

supplier in the path and continues to the last supplier. In this way, the partial probability 

of the last supplier in path ! (w| 
! 
J! |,k) is the product of the state probabilities of all of the 
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�

suppliers in the path. The third constraint (3.11) assures that for each path ! the partial 

!probability wrk is always non-negative and is positive only for the value of r and k such that 

yj(r,!),k = 1. The fourth constraint (3.12) serves as the budgetary constraint and the fifth 

constraint (3.13) assures that only one mitigation activity (k) is selected for each supplier 

(j). 

XX 
Maximize w| 

! 
J! |,k (3.8) 

!2⌦ k2K 
!s.t. w1k = Pj(1,!),`(1,!),k(1,!) yj(1,!),k 8k 2 K; ! 2 ⌦ (3.9) 

X X 
! ! wr 1,k =

1 
wrk (3.10)Pj(r,!),`(r,!),k(r,!)

k2K k2K 

8! 2 ⌦; 8j 2 J ; r = 2, ..., |J!| 

! wrk  yj(r,!),k 8j 2 J ; k 2 K; ! 2 ⌦ (3.11) 

X 
cjkyjk  b (3.12) 

j2J X 
yjk = 1  (3.13) 

k2K 

The rationale for this linearized model is as follows. Let kj ⇤ be the mitigation level 

selected for supplier j in the optimal solution (i.e., the value of k for which yjk = 1). 

Then the recursive equations are as follows where Equation (3.14) represents the partial 

probability of the first (r = 1) supplier in each path (!) and Equation (3.15) represents 

the partial probabilities of each path (!) inclusive of all suppliers (|J!|) within the path 

beginning with the second (r = 2) supplier in the path. 
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1 1! ! ! ! wr 1,1 + wr 1,2 = wr1 + wr2 r = 2, ..., |J!| ; ! 2 ⌦Pj(r,!),`(r,!),1 Pj(r,!),`(r,!),2 
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�
1 

w ! = w ! r = 2, ..., |J!| ; ! 2 ⌦ r 1,2 r1Pj(r,!),`(r,!),1 

�

! w1k⇤(1) = Pj(1,!),`(1,!),k⇤(1,!) ! 2 ⌦ (3.14) 

!Pj(r,!),`(r,!),k⇤(r,!)wr 1,k⇤(r 1) = wrk⇤(r) r = 2, ..., |J!| ; ! 2 ⌦ (3.15) 

As an example, suppose that we mitigate supplier r 1 by choosing k = 2 and supplier 

r by choosing mitigation activity k = 1. It follows that: 

(3.16) 

Because wr 
! 

1,1 = 0 and wr 
! 
2 = 0, 

(3.17)

Rearranging Equation (3.17) yields the recursive equation in the format shown in Equa-

tion (3.15): 

!Pj(r,!),`(r,!),1wr 1,2 = wr1 r = 2, ..., |J!| ; ! 2 ⌦ (3.18) 
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3.4 Motivating Example: Nuclear Power Plant Supply Chain 

In order to demonstrate the application of our approach to supply chain risk mitigation, 

we illustrate the model with an example from the nuclear power industry. According to 

the World Nuclear Association (www.oecd-nea.org) [3], the total value of nuclear 

power plant construction globally between 2014 and 2030 is estimated at $1.23 trillion and 

will rely on approximately $575 billion in international procurements. According to the 

same report, 295 new nuclear power plants were either under construction or planned as of 

March 11, 2014. With continued emphasis on green energy as a means to stabilize CO2 

emissions worldwide, nuclear energy is viewed as a clean energy source that continues to 

be sought after by many countries. 

Aside from the severity of adverse events that may result from nuclear energy, several 

factors exist that make nuclear energy a cost prohibitive solution. A primary factor is the 

requirements and standards required to enter the nuclear supply chain. As a result, many 

suppliers are not interested in entering the supply chain. In turn, companies responsible 

for constructing and maintaining nuclear power plants are faced with a limited supply base 

to produce critical, large, and expensive items. The quality and reliability of these items 

are essential to the safe operation of the nuclear power plant. Furthermore, delays in the 

delivery of these products to the construction site can result in losses estimated at $1.2 

million per day [149]. In the summer of 2017, construction at the Virgil C. Summer Nu-

clear Generating Station near Jenkinsville, SC was abandoned due to a number of factors, 

including the deterioration of a “robust supply chain” within the industry over the past 30 

years [150]. 
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In 2014, the industry identified two primary challenges for nuclear power to remain 

competitive [3]: (1) ensuring that the economics of nuclear power are competitive with 

other generating sources and (2) reliable international supply chains are developed that 

are capable of delivering high quality products. The research presented here addresses the 

latter, which is directly related to the overall competitiveness of nuclear power generation. 

In the sections that follow, the models presented above are applied at two levels within 

the same supply chain. The first level analyzes the basic supply chain used in nuclear power 

plant construction using the proposed methods. The second level supply chain is based on 

the perspective of a supplier to the firm constructing the nuclear power plant and consists 

of a turbine, which is a key component used within the nuclear power plant. This approach 

demonstrates the robustness of the application of our methodology in that it applies equally 

well to firms at various levels of the same supply chain. 

3.4.1 Supply chain definition 

We have chosen the construction of a nuclear power plant and the manufacture of one 

of the components used in the manufacture of one of the primary items within the power 

plant to demonstrate the methods outlined in this research. More specifically, we have 

chosen a pressurized water reactor as the basis for the bill of materials of the nuclear 

power plant because several pressurized water reactor power plants are being constructed 

worldwide. Further, our focus is on the primary items sourced for the plant. We exclude 

building materials and other items in order to simplify the application. Figure 3.2 shows 

a schematic of a pressurized water reactor and its primary items [151]. We will include 
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the following items in the bill of materials used in our analysis in the pages that follow: 

containment structure, pressurizer, steam generator, control rods, reactor vessel, turbine, 

generator, and condenser. 

Figure 3.2: Schematic of a pressurized water reactor nuclear power plant. 

One of the primary items in the pressurized water reactor is the steam turbine. Within 

the reactor vessel, the core creates heat. The heat is then transferred via the primary coolant 

loop to the steam generator where water is vaporized and produces steam. The steam is di-

rected to the main turbine, causing it to turn the turbine generator, which results in electrical 

power production. [152] Steam turbine designs vary. However, the primary components of 

a steam turbine include the casing, valves, a rotor containing blades, diaphragms, nozzles, 

and a host of other auxiliary equipment that comprise the turbine system. Examples of 

auxiliary equipment include thrust bearings, journal bearings, couplings, and lubricating 

systems. For the purposes of this study, we will examine a steam turbine thrust bearing. 
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Figure 3.3 outlines the flow of the bills of material for the pressurized water reactor, 

steam turbine, and thrust bearing that will be used in the computational studies that follow. 

In the section that follows, we develop the fault trees and binary decision diagrams that 

represent the pressurized water reactor and thrust bearing supply chains. The examples 

that follow demonstrate the robustness of our approach at various levels of a supply chain 

as well as the flexibility that the approach provides in assessing, identifying, and mitigating 

risks at various levels of a supply chain. 

Figure 3.3: Bills of material. 

3.4.2 Fault tree and binary decision diagram formulation 

We introduce a fault tree and subsequently a binary decision diagram to represent each 

of the supply chains described above - the supply chain used to construct the pressurized 

water reactor and the supply chain used to manufacture a thrust bearing used in the steam 
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turbine, which is a primary component of the pressurized water reactor. For both the pres-

surized water reactor and thrust bearing supply chains, we take the perspective of the two 

firms responsible for outsourcing the respective goods and services. The two fault trees 

and two binary decision diagrams are built from the perspectives of those two firms. Ba-

sic events in the fault trees represent the primary goods and services being procured by 

the firm. Intermediate events are used where necessary to group lower-tier suppliers that 

provide more complex goods and services. The presence of dual sources (i.e., redundant 

suppliers) of a good and/or service are connected via AND gates. Although present within 

LVHV supply chains, redundancies are not common in practice and sourcing from more 

than two suppliers for the same good and/or service is rare. A binary decision diagram 

is formulated from the fault tree for the supply chain being studied using the component 

connection method in order to leverage the mathematical modeling advantages of binary 

decision diagrams [147]. Although calculating the top event probability from a fault tree 

is an acceptable method, doing so often requires the use of approximations and therefore, 

large inaccuracies may exist depending on the magnitude of the individual event probabili-

ties and/or the size of the underlying fault tree. Even though fault trees are a preferred way 

to illustrate the causes of failure, the use of binary decision diagrams overcome the poten-

tial inaccuracies associated with calculating failure probabilities from a fault tree [143]. 

3.4.2.1 Pressurized water reactor 

For the pressurized water reactor supply chain, we take the perspective of the construc-

tion firm responsible for sourcing the primary goods and services for the pressurized water 
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reactor. In the examples presented, we assume that multiple pressurized water reactors 

are being built simultaneously. As a result, dual-sourcing positions across the multiple 

pressurized water reactor construction sites exist for some, but not all of the goods and 

services being procured by the construction firm. The pressurized water reactor supply 

chain consists of the eight primary goods and services provided by eleven suppliers. Re-

dundant suppliers are utilized for the control rods, the reactor vessels, and the condensers. 

Table 3.1 outlines the suppliers (j), their respective goods and services, and the supplier’s 

unreliability (uj ). The unreliability numbers presented here are synthetic, but reflective of 

unreliabilities experienced within the nuclear industry. 

Table 3.1: Pressurized water reactor supply chain data. 
Supplier (j) Good and/or Service Supplier unreliability (uj ) 

1 Containment structure 0.0031 

2 Pressurizer 0.0236 

3 Steam generator 0.0489 

4 Control rods 0.0023 

5 Control rods 0.0215 

6 Reactor vessel 0.0441 

7 Reactor vessel 0.0263 

8 Turbine 0.0347 

9 Generator 0.0088 

10 Condenser 0.0288 

11 Condenser 0.0411 

The resulting fault tree for the pressurized water reactor can be found in Figure 3.4. 

Each of the goods and services provided are represented by basic events and the respective 

suppliers that provided them. Basic events that are inputs to the three AND gates in the 

fault tree include control rods, the reactor vessel, and the condenser. AND gates represent 
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situations where the firm constructing the pressurized water reactor has chosen dual source 

options. The containment structure, pressurizer, steam generator, turbine, and generator 

are being provided by single sources of supply in this example and the basic events that 

represent them are connected via OR gates in the fault tree. 

Figure 3.4: Pressurized water reactor fault tree. 

A total of eight cut sets (i = 1, ..., 8) result from the pressurized water reactor fault tree. 

Each cut set is a minimal cut set, which represents an event or series of events whose oc-

currence will result in the realization of the top event of the fault tree [102]. Specific to the 

application being discussed, the failure of the individual suppliers or the joint combination 

of the suppliers within a cut set to provide their respective good and service would result in 

the failure of the pressurized water reactor reactor being constructed on time. By assum-

ing independence of failures between suppliers, we can apply the rules of Boolean algebra 

72 



www.manaraa.com

�

and multiply the unreliabilities of the suppliers represented by the basic events within each 

cut set, which results in the unreliability of each cut set (Ui). By applying the rare event 

approximation (uj < 0.1) [102] and given that the top event unreliability is the union of 

the minimal cut sets, we can sum the individual minimal cut set unreliabilities to obtain the 

unreliability of the top event in the fault tree, US
REA = 

P 
Ui, where US is the unreliability 

of the system being studied and REA denotes that US was calculated using the rare event 

approximation. Likewise, the reliability of the system, RS , is equivalent to 1 US . As a 

result, we are able to obtain the unreliability of constructing the pressurized water reactor 

on-time. In the case of the data presented in Table 3.1 this results in a pressurized water 

reactor unreliability of UREA 
PWR  = 0.1215. Table 3.2 includes the minimal cut sets and result-

ing unreliabilities for the pressurized water reactor fault tree. The • indicates an AND gate 

and + (not shown in the reduced form illustrated in Table 3.2) indicates an OR gate. To 

calculate cut set unreliability, we use Boolean algebra where the unreliabilities of events 

(suppliers) within the same minimal cut sets connected by AND gates are multiplied by 

one another and those connected by OR gates are added to one another. 

Next, we construct a binary decision diagram using the component connection method. 

The binary decision diagram structure is used as input to the imperfect mitigation mod-

els as described above. Using the binary decision diagram provides a mathematically and 

computationally efficient means to identify specific basic events (suppliers) within the fault 

tree structure and update the overall system unreliability/reliability. Figure 3.5 is a graph-

ical representation of the binary decision diagram based on the fault tree shown in Figure 

3.4 where nodes represent suppliers. 
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Table 3.2: Pressurized water reactor fault tree minimal cut set data. 
Minimal Cut Set Cut Set 

(i) Suppliers (j) Unreliability (Ui) 

1 1 0.0031 

2 2 0.0236 

3 3 0.0489 

4 4 • 5 0.0000 

5 6 • 7 0.0012 

6 8 0.0347 

7 9 0.0088 

8 10 • 11 0.0012 
P Ui = 0.1215 

Figure 3.5: Binary decision diagram for pressurized water reactor fault tree. 
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3.4.2.2 Steam turbine thrust bearings 

Steam turbine thrust bearings are used as a primary component in the steam turbine 

(j = 8 in the pressurized water reactor fault tree). In constructing the fault tree for the 

thrust bearing, we take the perspective of the firm who is the supplier to the steam turbine 

manufacturer. In our example, the thrust bearing manufacturer’s supply chain consists of 

44 suppliers (see Table 3.3 for individual supplier unreliabilities) and the resulting fault 

tree consists of 31 gates, which is shown in Figure 3.6. 

Figures 3.6 - 3.11 illustrate the supply chains as fault trees for the items used in the 

manufacture of the thrust bearing. These items include the thrust shoe, bracket, leveling 

links, and support ring. Thrust shoes are sourced from two separate suppliers. The use of 

an AND gate (Gate No. 2) describes this situation within the fault tree. All other top-level 

items (bracket, leveling links, support ring) are procured from single or sole sources. This 

situation is represented by an OR gate (Gate No. 1) in the top-level fault tree (Figure 3.6). 

Likewise, within the lower-level fault trees (Figures 3.7-3.11), the use of AND gates and 

OR gates are used to describe redundant and single/sole source positions respectively. 
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Table 3.3: Steam turbine thrust bearing supply chain data. 
Good and/or Service Unreliability (uj ) Supplier (j) Good and/or Service Unreliability (uj ) 

Plating 0.0195 Lab & Test 0.0199 

Lab & Test 0.0424 Melt Stock 0.0178 

Machining 0.0379 Lab & Test 0.0322 

Machining 0.0419 Heat Treatment 0.0492 

Casting 0.0203 Heat Treatment 0.0157 

Forging 0.0450 Machining 0.0422 

Lab & Test 0.0323 Casting 0.0065 

Heat Treatment 0.0081 Casting 0.0062 

Melt Stock 0.0092 Lab & Test 0.0276 

Lab & Test 0.0433 Heat Treatment 0.0097 

Plating 0.0459 Heat Treatment 0.0129 

Lab & Test 0.0316 Melt Stock 0.0147 

Machining 0.0009 Lab & Test 0.0190 

Casting 0.0472 Machining 0.0343 

Casting 0.0062 Machining 0.0328 

Lab & Test 0.0454 Casting 0.0049 

Heat Treatment 0.0332 Forging 0.0107 

Melt Stock 0.0016 Forging 0.0010 

Lab & Test 0.0475 Heat Treatment 0.0425 

Forging 0.0362 Heat Treatment 0.0358 

Machining 0.0189 Melt Stock 0.0484 

Casting 0.0114 Lab & Test 0.0095 
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Figure 3.6: Steam turbine thrust bearing manufacturer top-level fault tree. 

Figure 3.7: Thrust shoe supply chain (Source A). 
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Figure 3.8: Thrust shoe supply chain (Source B). 

Figure 3.9: Bracket supply chain (Source C). 
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Figure 3.10: Leveling link supply chain (Source D). 

Figure 3.11: Support ring supply chain (Source E). 
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A total of 99 minimal cut sets are contained within the thrust bearing fault tree, which 

is comprised of 44 suppliers representing the supply chain used to manufacture the thrust 

bearing. We again apply the rare event approximation and apply the rules of Boolean 

algebra. The resulting steam turbine thrust bearing supply chain system unreliability is 

UREA = 0.3128. In other words, the steam turbine thrust bearing supply chain has aST T B 

31.28% probability of failure. This translates to a 31.28% probability of not being com-

pleted on-time as the result of delivery failures within the supply chain. Table 3.4 sum-

marizes the unreliability data of the steam turbine thrust bearing supply chain fault tree 

minimal cut sets. 

80 



www.manaraa.com

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

Table 3.4: Steam turbine thrust bearing fault tree minimal cut set data. 
Cut Set Cut Set Cut Set 

Minimal Suppliers Unreliability Minimal Suppliers Unreliability Minimal Suppliers Unreliability 

Cut Set (i) (j) (Ui) Cut Set (i) (j) (Ui) Cut Set (i) (j) (Ui ) 

1 1•11 0.00089505 34 9•20 0.00033304 67 7•18 0.00005168 

2 1•12 0.00061620 9•16 0.00041768 68 7•19 0.00153425 

3 1•13 0.00001755 36 9•17 0.00030544 69 7•14•15 0.00000945 

4 1•18 0.00003120 37 10•11 0.00198747 7•20 0.00116926 

1•19 0.00092625 38 10•12 0.00136828 71 7•16 0.00146642 

6 1•14•15 0.00000571 39 10•13 0.00003897 72 7•17 0.00107236 

7 1•20 0.00070590 10•18 0.00006928 73 8•11 0.00037179 

8 1•16 0.00088530 41 10•19 0.00205675 74 8•12 0.00025596 

9 1•17 0.00064740 42 10•14•15 0.00001267 8•13 0.00000729 

2•11 0.00194616 43 10•20 0.00156746 76 8•18 0.00001296 

11 2•12 0.00133984 44 10•16 0.00196582 77 8•19 0.00038475 

12 2•13 0.00003816 10•17 0.00143756 78 8•14•15 0.00000237 

13 2•18 0.00006784 46 5•11 0.00093177 79 8•20 0.00029322 

14 2•19 0.00201400 47 5•12 0.00064148 8•16 0.00036774 

2•14•15 0.00001241 48 5•13 0.00001827 81 8•17 0.00026892 

16 2•20 0.00153488 49 5•18 0.00003248 82 21 0.01890000 

17 2•16 0.00192496 5•19 0.00096425 83 24 0.01780000 

18 2•17 0.00140768 51 5•14•15 0.00000594 84 25 0.03220000 

19 3•4•11 0.00007289 52 5•20 0.00073486 22 0.01140000 

3•4•12 0.00005018 53 5•16 0.00092162 86 23 0.01990000 

21 3•4•13 0.00000143 54 5•17 0.00067396 87 26 • 27 0.00077244 

22 3•4•18 0.00000254 6•11 0.00206550 88 28 0.04220000 

23 3•4•19 0.00007543 56 6•12 0.00142200 89 31 0.02760000 

24 3•4•14•15 0.00000046 57 6•13 0.00004050 32 0.00970000 

3•4•20 0.00005749 58 6•18 0.00007200 91 29 • 30 0.00004030 

26 3•4•16 0.00007210 59 6•19 0.00213750 92 33 0.01290000 

27 3•4•17 0.00005272 6•14•15 0.00001317 93 34 • 35 0.00027930 

28 9•11 0.00042228 61 6•20 0.00162900 94 36 • 37 0.00112504 

29 9•12 0.00029072 62 6•16 0.00204300 43 0.04840000 

9•13 0.00000828 63 6•17 0.00149400 96 44 0.00950000 

31 9•18 0.00001472 64 7•11 0.00148257 97 38 0.00490000 

32 9•19 0.00043700 7•12 0.00102068 98 39 • 40 0.00001070 

33 9•14•15 0.00000269 66 7•13 0.00002907 99 41 • 42 0.00152150 

P Ui = 0.31292916 
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Figure 3.12 shows a portion of the overall binary decision diagram developed from 

the steam turbine thrust bearing fault tree and specifically the suppliers that comprise the 

thrust shoe supply chain (see Figure 3.7). After applying simplification rules [147], the 

steam turbine thrust bearing binary decision diagram consists of a total of 99 paths. 

Figure 3.12: Binary decision diagram for steam turbine thrust bearing thrust shoe (see 
Figure 3.7). 

3.4.3 Mitigation Cost 

The cost of mitigating the risks of supplier j is a function of the time estimated for 

mitigation activity (k) and the hourly rate of personnel to complete the activity (h = $104  
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per hour [104]). The respective costs used for the four mitigation activities available are 

described in Table 3.5 and were estimated empirically based on industry knowledge. 

Table 3.5: Cost function values. 

Mitigation Activity k Reliability cjk 

Improvement 
Improve the existing supplier 1 15% $12,209 
Replace supplier with an improved supplier 2 25% $27,737 
Increase oversight at existing supplier 3 5% $10,816 
No mitigation activity 4 0% $0 

One restriction of the perfect mitigation model is that only one mitigation strategy/activity 

is permitted per supplier. In order to maintain consistency between the perfect mitigation 

model and the imperfect mitigation model for comparison purposes, we have set the miti-

gation cost (cj ) in the perfect mitigation model to $12,209, which is equivalent to cj 1 in the 

imperfect mitigation model even though the functions described in Table 3.5 do not apply 

to the perfect mitigation model. 

3.5 Computational Results 

For the supply chains described above, we run the respective models outlined using 

data representative of the suppliers of goods and services for the LVHV industry being 

described. The computational results are presented in a fashion relevant to the supply 

chain professional who, with a limited budget, will be challenged with minimizing risk 

across the supply chain system he/she is managing. As a result, each model is run at 
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$10,000 budgetary increments up to a maximum budget of $300,000 or an overall system 

reliability of 100% (0% unreliability), whichever comes first. Results are presented as a 

Pareto frontier and demonstrate the optimal tradeoff between the budget allocation and 

resulting reliability of the supply chain system being analyzed. 

Both the pressurized water reactor and steam turbine thrust bearing supply chains 

are analyzed in the pages that follow utilizing each of the modeling approaches outlined 

throughout this research. In the sections that follow, we analyze the computational results 

of the respective models. 

3.5.1 Perfect Mitigation 

Here, we analyze the supply chains using the perfect mitigation model described in 

Equations (3.2) - (3.4). Figure 3.13 demonstrates the tradeoff between the system relia-

bility and mitigation cost for both the pressurized water reactor and steam turbine thrust 

bearing supply chains independently. Prior to investing in mitigation activities, the relia-

bility of the pressurized water reactor and steam turbine thrust bearing supply chains were 

RPMM  
PWR  = 0.8837 and RPMM  

STTB = 0.7285 respectively. At successive levels of investment, 

the reliability of each supply chain system increases as expected. The pressurized water 

reactor supply chain achieves 100% reliability at a cost of $109,881. The steam turbine 

thrust bearing does not achieve 100% reliability prior to exhausting the $300,000 maximum 

budget. Instead, the thrust bearing supply chain sees a maximum reliability of 99.98% at 

a total cost of $293,016. In both cases, the marginal improvement in system reliability 

decreases with increasing investment in mitigation activity. This information could prove 
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quite important to a practitioner responsible for allocating resources to minimizing risk 

within a supply chain. For example, a supply chain manager might determine that bud-

geting $150,000 to increase the reliability of the thrust bearing supply chain is satisfactory 

given that the resulting improvement in reliability (to 95.12%) is sufficient. 

Figure 3.13: System reliability improvement as a function of mitigation budget (perfect 
mitigation model). 

Figures 3.14 and 3.15 visually represent the optimal cut sets whose probabilities have 

been nullified and contains the suppliers selected to mitigate for each formulation and 

supply chain. In the case of the pressurized water reactor, minimal cut set 4 is not chosen. 

This is reasonable given the fact that the cut set is already 100% reliable without any 

mitigation. Minimal cut sets 6, 24, 33, 51, 78, 91, and 98 are not chosen by the model 
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in the thrust bearing supply chain system. Similar to minimal cut set 4 in the pressurized 

water reactor supply chain, the minimal cut sets not chosen in the thrust bearing supply 

chain have unreliability values nearing 100% (Ui ⇠ 0.0000). Thus, taking mitigating 

actions would provide nearly no marginal benefit to the system’s overall reliability. 

Figure 3.14: Minimal cut sets mitigated in pressurized water reactor supply chain. 
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Figure 3.15: Minimal cut sets mitigated in steam turbine thrust bearing supply chain. 
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3.5.2 Imperfect Mitigation 

Equations (3.8) - (3.13) develop the formulation of the linearized imperfect mitiga-

tion model used to analyze the pressurized water reactor and steam turbine thrust bearing 

supply chains. Prior to investment or taking any mitigating actions, the system reliabili-

ties of the pressurized water reactor and steam turbine thrust bearing supply chains were 

RIMM  
PWR  = 0.8836 and RIMM  = 0.7982. Figure 3.16 illustrates the tradeoff betweenSTTB 

increasing investments in mitigating activities and the improvement in supply chain relia-

bility. At a total mitigation budget of $300,000 neither of the supply chains had achieved 

100% system reliability (RIMM  = 0.9122, RIMM  = 0.8354). Figure 3.17 illustrates PWR  STTB 

the suppliers and mitigation activities selected as a function of increasing investment in 

risk mitigation activities for the pressurized water reactor supply chain. In the case of the 

imperfect mitigation model, risk mitigation activities are chosen for each supplier in the 

supply chain. Those activities are as follows: (1) improve the existing supplier (k = 1), 

(2) replace the existing supplier with a new and improved supplier (k = 2), (3) increase 

the firm’s oversight at the existing supplier (k = 3), or (4) take no mitigation activity at all 

(k = 4). The specific investment costs for each activity and the assumed improvement of 

the supplier as a result of taking the respective mitigation action can be found in Table 3.5. 

Optimal mitigation activities chosen for the steam turbine thrust bearing supply chain are 

shown in Figure 3.17. 
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Figure 3.16: System reliability improvement as a function of mitigation cost (imperfect 
mitigation model). 

89 



www.manaraa.com

(a) Pressurized water reactor. 

(b) Steam turbine thrust bearing. 
Figure 3.17: Mitigation activities selected as a function of mitigation budget. 
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Similar to the perfect mitigation model, the tradeoff between mitigation investment and 

improvement in overall supply chain system reliability is useful to a practitioner. Com-

pared to the perfect mitigation model, the imperfect mitigation model provides additional 

flexibility since mitigation activities for individual suppliers are are chosen by the model. 

As a result, improvements in system reliability based on specific actions are observed up 

to the maximum budget allocated ($300,000) and the practitioner is left to decide if the 

incremental investment is worth the additional improvement. 

The additional flexibility that the imperfect mitigation model provides a supply chain 

practitioner is evident in the activities chosen by the model. Generally, if mitigation funds 

are available, the model seeks to maximize the use of those funds for a corresponding 

maximum benefit in system reliability. As a result, the mitigation activities chosen and 

the suppliers chosen to mitigate change at increasing budgetary levels depending on the 

cost-reliability tradeoff; a pattern that is observed in both the pressurized water reactor and 

steam turbine generator supply chains. 

3.5.3 Comparison of Mitigation Models and Formulations 

When comparing the supply chain system reliabilities generated by the perfect and 

imperfect mitigation models, the differences can be attributed to the underlying models. 

More specifically, the perfect mitigation model uses a fault tree and subsequently mini-

mal cut sets as its basis. Consequently, the assumptions that underly fault trees and the 

Boolean algebra used to calculate the top event reliabilities are also assumed in the perfect 

mitigation model. The differences observed in our computational examples are practicable 
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and compare reasonably well with what has been reported in the literature where com-

parisons between fault trees to binary decision diagrams are discussed [143]. Table 3.6 

shows a summary of the system reliability values calculated for each of the supply chains 

studied and the respective mitigation model prior to any mitigation activities being taken. 

For comparison purposes, the respective system reliabilities calculated using the rare event 

approximation are also included. 

Table 3.6: Comparison of system reliability for perfect and imperfect mitigation models 
(no mitigation). 

Steam 
Pressurized Turbine 

Water Thrust 
Description Reactor Bearing 
Rare Event Approximation (RREA )S 0.8785 0.6871 
Perfect Mitigation Model (RPMM  )S 0.8837 0.7275 
Imperfect Mitigation Model (RIMM  )S 0.8836 0.7982 

Although the perfect mitigation model provides less information to the practitioner than 

the imperfect mitigation model, it can be notionally useful to identify areas of concern 

(suppliers to focus on when planning mitigation efforts) within the supply chain. Once 

those areas of concern are identified, the practitioner may chose the specific mitigation 

activities to perform for each individual supplier. 

Next, we compare the two mitigation models by analyzing the solution sets at the same 

budgetary levels and the system reliabilities at the same budgetary levels for each of the 

supply chain systems studied. The perfect mitigation model contains two decision vari-

ables, xi and yj , which represent the cut sets containing suppliers and the suppliers chosen 
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at each mitigation budget level respectively. As a result, we are able to compare the so-

lution sets of suppliers selected for the perfect and imperfect mitigation models for each 

budgetary level. Figure 3.18 includes the results of the solution set comparison for both 

supply chains studied. Table 3.7 summarizes the comparison of the frequency by which 

suppliers were selected by each mitigation model for each of the supply chains. Overall, 

the models vary considerably with respect to the suppliers selected for mitigation. It’s 

worth noting that the perfect mitigation model for the pressurized water reactor supply 

chain reached 100% reliability at a budgetary level of $100,000. Therefore, comparisons 

of the two models at budgetary levels greater than $100,000 are not valid. Across both 

supply chains, certain suppliers appear to be preferred by one or both of the mitigation 

models. For example, Supplier 3 is selected by both the perfect and imperfect mitigation 

models consistently in the pressurized water reactor supply chain up to a budgetary level 

of $110,000. Similarly, Supplier 28 is selected by both mitigation models in the steam 

turbine thrust bearing supply chain up to a budgetary level of $300,000. In both supply 

chains, Supplier 3 and Supplier 28 represent suppliers with lower reliabilities in compar-

ison to other suppliers. From these general trends, it appears that there is a preference 

to select suppliers for mitigation that will have the largest contribution to maximizing the 

reliability of the respective supply chain portfolio. 
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(a) Pressurized water reactor. 

(b) Steam turbine thrust bearing. 
Figure 3.18: Comparison of solution sets. 
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Table 3.7: Frequency of supplier selection by each mitigation model. 
Steam 

Pressurized Turbine 
Water Thrust 

Supplier selected by Reactor Bearing 
Only the perfect mitigation model 20 132 
Only the imperfect mitigation model 0 8 
Both the perfect and imperfect mitigation models 29 233 
Neither the perfect nor imperfect mitigation model 72 947 
Total number of mitigation opportunities 121 1320 

To compare the system reliabilities for each budgetary level, we introduce a metric, 

|RPMM  RIMM  
S S |, that we define as 

RPMM  where RPMM  
S is the system reliability for the perfect 

S 

mitigation model and RIMM  
S is the system reliability for the imperfect mitigation model at 

each budget level for the respective supply chain being analyzed. A summary of results is 

presented in Figure 3.19. In general, increases for each supply chain with increasing bud-

get levels with the exception of STTB , which decreases from 9.6% at a mitigation budget 

of $10,000 to 0.8% at $30,000 and then increases at successive budget levels with a few 

exceptions. Overall, PWR  increases with increasing mitigation budgets with a few excep-

tions. Thus, across the range of mitigation budgets inspected, the two mitigation models 

diverge from one another with increasing budget and appear to converge to a relatively 

constant value of PWR  ⇡ 9.0% and STTB ⇡ 16.5% for each of the respective supply 

chains. These results are important for the practitioner to understand if both mitigation 

models are used and subsequently compared to one another. In addition, the practitioner 
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should be aware of how the difference between the two models stabilizes only at higher 

budgetary levels. 

Figure 3.19: Comparison of perfect and imperfect mitigation model system reliabilities. 

In general, the solution times observed for all models, formulations, and supply chains 

were as expected in that the linearized formulations (Eq. (3.2)-(3.4) and (3.8)-(3.13)) con-

verged to a solution quicker than the nonlinear formulations (Eq. (3.1)-(3.4) and Eq. 

(3.5)-(3.7)) and the pressurized water reactor supply chain containing fewer nodes (i.e., 

suppliers) had solution times that were less than those of the larger steam turbine thrust 

bearing supply chain. Overall, the steam turbine generator supply chain, which consists of 

44 suppliers took longer to solve than the pressurized water reactor supply chain, which 

has 11 suppliers. Additionally, the nonlinear formulation took longer to solve than the 
96 
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linearized formulation. Lastly, overall the perfect mitigation model solved more quickly 

than the imperfect mitigation model and the majority of the models contained within the 

computational study converged on the optimal solution within a maximum of a few min-

utes with few exceptions. Table 3.8 shows the solution times as a function of the budgetary 

levels at which the respective models were run and provides summary statistics for each 

model, formulation, and supply chain combination. When applied to larger supply chain 

systems, faster computation time may be beneficial to the supply chain professional. As 

a result, depending on the objective of the analysis, the perfect mitigation model may be 

most advantageous. However, if the details provided by the imperfect mitigation model 

are required, the linearized form of the model would most likely be preferred due to its 

improved computational efficiency over the nonlinear formulation. 
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Table 3.8: Summary of solution times. 
Perfect Mitigation Model Imperfect Mitigation Model 

Nonlinear Linear Nonlinear Linear 
Bonmin CPLEX Bonmin CPLEX 

PWR STTB PWR STTB PWR STTB PWR STTB 
$10,000 0.000 0.00 0.000 0.000 0.89 66.59 0.00 0.00 
$20,000 0.284 18.80 0.002 0.012 3.03 107.67 0.02 0.97 
$30,000 0.158 9.62 0.007 0.010 2.63 114.95 0.05 5.40 
$40,000 0.131 9.72 0.008 0.010 1.54 102.97 0.05 7.11 
$50,000 0.204 12.05 0.010 0.016 7.13 47.00 0.14 15.14 
$60,000 0.240 43.25 0.010 0.009 3.30 309.27 0.09 27.57 
$70,000 0.234 55.24 0.006 0.010 2.85 341.24 0.08 35.07 
$80,000 0.193 36.91 0.006 0.009 5.61 112.60 0.06 48.31 
$90,000 0.045 11.87 0.006 0.010 4.00 291.24 0.11 61.18 
$100,000 0.079 13.29 0.003 0.010 2.56 673.47 0.11 69.92 
$110,000 0.015 13.62 0.002 0.010 3.48 406.68 0.12 58.99 
$120,000 - 1272.18 - 0.010 4.66 229.14 0.11 127.59 
$130,000 - 645.30 - 0.007 0.95 436.55 0.12 91.09 
$140,000 - 246.02 - 0.007 1.15 509.40 0.11 90.47 
$150,000 - 108.21 - 0.011 3.52 191.66 0.15 73.12 
$160,000 - 53.29 - 0.007 7.60 154.08 0.16 111.96 
$170,000 - 5944.49 - 0.009 3.45 617.86 0.39 122.44 
$180,000 - 273.51 - 0.009 3.38 2064.43 0.18 156.72 
$190,000 - 29.10 - 0.007 0.63 1216.15 0.18 126.77 
$200,000 - 18.47 - 0.020 3.47 359.67 0.19 94.15 
$210,000 - 10.31 - 0.007 5.88 80.62 0.18 133.09 
$220,000 - 14.01 - 0.007 0.31 3480.11 0.16 187.96 
$230,000 - 20.60 - 0.007 4.29 439.12 0.14 112.24 
$240,000 - 51.42 - 0.007 1.29 147.21 0.14 151.75 
$250,000 - 13.98 - 0.009 0.58 359.57 0.10 312.28 
$260,000 - 6.92 - 0.007 3.97 509.15 0.09 184.43 
$270,000 - 7.30 - 0.008 4.35 210.55 0.13 147.36 
$280,000 - 60.19 - 0.007 0.21 148.24 0.07 173.06 
$290,000 - 41.02 - 0.008 0.32 314.08 0.08 255.75 
$300,000 - 35.55 - 0.007 0.68 1646.63 0.08 164.79 
Average 0.14 302.88 0.01 0.01 2.92 522.93 0.12 104.89 
Standard Deviation 0.09 1095.28 0.00 0.00 1.99 711.31 0.07 74.44 
Maximum 0.28 5944.49 0.01 0.02 7.60 3480.11 0.39 312.28 
Minimum 0.00 0.00 0.00 0.00 0.21 47.00 0.00 0.00 
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3.6 Conclusions and Managerial Insights 

The approach outlined in this research solves many of the supply chain risk mitiga-

tion decisions that face a practitioner in a LVHV supply chain. Mitigation decisions are 

typically made in silos and in a vacuum without full perspective of the impact that the re-

spective decisions may have on the supply chain or the firm in general. In practice, multiple 

variables play a role in these types of decisions and coalescing the requisite information 

together in a timely fashion is a challenge. Further, experience is commonly used over 

quantitative analysis and can be inherently biased. Because our approach links the bill of 

materials being sourced by modeling the supply chain system as a fault tree, the practi-

tioner is enabled with a quantitative decision tool that takes into account the impact that 

an individual mitigation decision can have on the overall reliability of the supply chain 

being analyzed. In addition, the data used within the models presented is available to most 

managers, which makes the approach practical to implement. 

All too often, reactionary decision making is common in supply chain management and 

resources are consumed in the associated activities. The methods described in this research 

enable the supply chain practitioner to conduct scenario analysis to determine which supply 

chain structures pose the greatest risk and highest costs to manage. Examples of scenarios 

that can be analyzed include, but are not limited to supplier selection, the use of single 

or sole sources of supply, and the impact of redundant sources of supply. In addition, the 

supply chain models can be updated to reflect the actual performance of suppliers. As 
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a result, the supply chain professional may choose to reallocate resources to individual 

suppliers in order to further mitigate risk within the supply chain for orders that have not 

yet been fulfilled. 

As noted, many decisions are based on experience, which is valuable, but can be flawed. 

The data required in the models described is collected by most firms and is readily avail-

able via their respective enterprise resource planning systems. As a result, practitioners 

can utilize available data to make more quantitatively informed decisions, which can be 

supplemented by experience. For example, if run at various budgetary levels the imperfect 

mitigation model will return a set of supply chain system reliabilities. The practitioner can 

then use their experience and knowledge of the respective organization to make a tradeoff 

between the mitigation costs and improved reliability provided by the Pareto set. 

We compared both the results and run times of the imperfect and perfect mitigation 

models presented. As expected, the linearized formulations of both models demonstrated 

quicker solution times than their nonlinear counterparts. Further, the steam turbine thrust 

bearing supply chain had slower solution times as expected due to it having more suppliers 

(44) than the pressurized water reactor supply chain (11). 

Even though the model is more complex, the imperfect mitigation model is more prac-

tical to implement as it provides provides specific mitigation activities for the the user to 

consider. Despite the fact that only four mitigation options were presented in this research, 

additional mitigation options can be added with relative ease to the imperfect mitigation 

model and customized to the individual needs of the firm. 
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The research presented herein advanced the use of fault tree analysis to represent a 

supply chain based on the bill of materials of a product or service procured [105]. Our 

approach provides a portfolio of risk mitigation activities that minimize supply chain risk 

while simultaneously achieving the budgetary constraints of the firm. Furthermore, the 

technique is applicable to all levels of the supply chain and viewpoints from within the 

supply chain. We demonstrated this by taking the perspective of a firm constructing a 

nuclear power plant as well as a lower-tier firm within the supply chain that manufactures 

a thrust bearing that will be supplied within a critical assembly installed in the power plant. 

Several areas of future work are planned. First, our modeling approach only accounts 

for the reliability of the suppliers within the supply chain and addresses neither the severity 

nor the impact of a delay that may result from a supplier having less than 100% reliability. 

Extending the models to account for the impact that a risk may have if realized as well as 

the associated downtime is useful. 

In addition, our approach assumes that supplier data is known at the time the model is 

built. In practice, this is not always the case and is most notable for new suppliers that the 

firm has no prior history with. We plan to develop a multiple logistic regression model to 

estimate the reliability of a supplier. In order to do so, it is important to understand the 

explanatory variables that correspond to supplier reliability. Once built and implemented 

in practice, such a model can leverage machine learning methodologies to better tune the 

model as well as provide additional insights into the factors that affect supplier reliability. 

By developing predictive models, we will be able to relax the independence assumption 

utilized in this research and begin to integrate risks shared by suppliers within a supply 
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chain. Examples of such risk factors include natural disasters such as hurricanes, which 

are geographically and seasonally dependent. 
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CHAPTER 4 

PREDICTING SUPPLIER RELIABILITY IN A LOW VOLUME HIGH VALUE 

SUPPLY CHAIN 

4.1 Introduction 

Over the past several years, manufacturing firms have unbundled, outsourced, off-

shored, globalized, and fragmented [153]. Benefits of these actions include cost reduction, 

a better focus on core competencies, access to suppliers with economies of scale and spe-

cialized process knowledge, the ability to leverage existing capital investments, increasing 

capacity flexibility, and transferring uncertainty [154]. However, new challenges have re-

sulted. One such challenge is the ability to efficiently and effectively coordinate multiple 

firms’ activities across the supply chain. This lack of coordination is common and can 

result in unplanned disruptions and delays. According to Deloitte [155], 85% of global 

supply chains experienced at least one disruption in the past 12 months. However, com-

panies that proactively manage supply chain risk were found to have spent 50% less to 

manage supplier disruptions than companies that stated they aren’t proactive. 

Proactive supply chain risk management is a complex activity because of silos be-

tween organizations, misaligned incentives, inefficient reporting structures, insufficient 

processes, and the scarcity of simple tools for professionals to use. Quite simply, although 

important, proactive supply chain management is difficult. As a result, it is a rarely applied 
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strategy within firms. According to Juttner et al. [6], what seems to be missing is a more 

proactive approach where risk implications are anticipated at an earlier stage. In March 

2000, a Philips semiconductor plant caught fire and resulted in a shortage of supply to both 

Ericsson and Nokia. The disruption impacted the two companies very differently. Philips 

was able to increase production at an alternative supplier and suffered little financial im-

pact. Ericsson on the other hand had taken on a single-source strategy and led to a loss of 

more than $400 million in potential revenue. [69] 

Industry examples like the fire experienced within the Ericsson and Nokia supply 

chains points to a need to better understand the potential consequences of taking on a 

single-source strategy. The ability to identify and mitigate risks within supply chains is 

of the utmost importance to both practitioners and researchers because of the potential for 

unfavorable consequences to a firm’s financial performance should those risks be realized 

[156]. As a result, supply chain risk management is a field of increasing importance [45]. 

The need for proactive supply chain risk management is an important endeavor re-

gardless of the volume being produced by the firm. However, the challenges faced by low 

volume industries and high volume industries can be different. For example, firms that par-

ticipate in higher volume industries such as those that support automotive and consumer 

markets have several contract manufacturers with relatively equivalent capabilities to pro-

cure from. In addition, products are relatively low cost and are made-to-stock. Inventory is 

maintained and optimized to provide a buffer against delays and any disruptions that may 

occur within a supply chain. Multiple inventory locations may also be possible due to a 

wide distribution network as well as the volume moving across the supply chain. Diverse 
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inventory locations and transportation networks can subsequently be leveraged to mitigate 

localized disruptions in the supply chain should a disaster occur. As a result of the demand 

generated in these higher volume industries multiple sources of supply are typical and pro-

vide an opportunity for a firm to diversify purchase order placements and mitigate against 

the risks that may result from any one firm within the supply chain. 

Many of these risk mitigation strategies are not afforded to lower volume industries. 

Instead, firms that participate in lower volume industries typically have low (if any) inven-

tory levels and single sources of supply. Companies that support the construction of nuclear 

power plants are an example of a low volume industry. Instead of producing millions of 

products each year, the demand created when a new nuclear power plant is constructed 

may only require a firm within the supply chain to produce 10 or so items over the course 

of 1-2 years. Although the associated production volume of products supporting the in-

dustry are typically low, the selling price for critical items may be quite high (on the order 

of hundreds of thousands or millions of dollars per unit). The higher value of the products 

being sourced in combination with fewer suppliers and lower quantities adds to the risk 

within the supply chain and necessitates a higher degree of reliability. 

Aside from the severity of adverse events that may result from nuclear energy should 

a nuclear event occur, several factors exist that make nuclear energy a cost prohibitive so-

lution. In addition to low volumes and somewhat sporadic demand, the strict requirements 

and high standards required to enter the nuclear supply chain cause many suppliers to avoid 

the industry altogether. In turn, companies responsible for constructing and maintaining 

nuclear power plants are faced with a limited supply base to produce critical, large, and ex-
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pensive items. The quality and reliability of these items are essential to the safe operation 

of the nuclear power plant. In addition, firms are faced with the financial consequences 

of delays in the delivery of these products to the construction site. Losses incurred by the 

power plant owner as a result of delays are estimated at $1.2 million per day [149] and can 

lead to liquidated damages being levied on suppliers. Although nuclear power capacity is 

increasing steadily with about 50 reactors under construction globally most of the power 

reactors currently planned or under construction are in Asia. As a result of a real or per-

ceived imbalance between the costs and risks associated with nuclear power, new power 

plant construction has slowed in the United States. The last nuclear power plant to be 

commissioned in the United States was the Watts Bar plant, which was constructed from 

1973-1990 and became operational in 1996. (www.world-nuclear.org) 

In March 2013, construction began on a total of four new nuclear reactors in the United 

States with two being constructed at the Virgil C. Summer Nuclear Generating Station site 

near Jenkinsville, SC and two at the Vogtle Electric Generating Plant site in Burke County, 

GA. Since construction began, both locations have experienced significant delays. In 2014, 

the industry identified two primary challenges for nuclear power to remain competitive: (1) 

ensure that the economics of nuclear power are competitive with other generating sources 

and (2) maintain a reliable international supply chain that is capable of delivering high 

quality products [3]. In the summer of 2017 construction at the Virgil C. Summer site 

was abandoned due to a number of factors, including the deterioration of a “robust supply 

chain” within the industry over the past 30 years [150]. 
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The ability to identify and mitigate risks within supply chains, whether supporting high 

or low volume industries, is of the utmost importance to both practitioners and researchers 

because of the potential for unfavorable consequences to a firm’s financial performance 

should those risks be realized [156]. As a result, supply chain risk management is a field of 

increasing importance [45]. Although much has been published in the domain, few studies 

have quantitatively identified the specific factors that affect supply chain risk. Some au-

thors have broadly categorized the types of supply chain risks in terms of whether or not 

the risk occurs internally or externally to the firm or supply chain [8, 157, 158, 159] as 

well as whether or not the risk is controllable or not controllable [157]. Ho et al. [9] cate-

gorizes risk factors as being macro or micro in nature. Examples of macro factors include 

natural disaster, war, terrorism, and political environment [112, 39, 157]. Micro factors 

include risks associated with demand, manufacturing, supply, information, transportation, 

and finance. 

In practice, firms that actively manage supply chain risk utilize a variety of tools to 

estimate the probability of a disruption and the factors that affect risk. Most are based 

on historical performance, are isolated to individual measures, and few are quantitative. 

Examples of methods include qualitative rating systems (high, medium, low), weighted 

averages or compilations of supplier metrics (on-time delivery, first-time quality, etc.), and 

hazard matrices. Although these types of methods can be directionally effective, little re-

search rigorously validates their performance in actually improving risk management deci-

sions [2]. In addition, the application of these methods have poor resolution, do not always 

provide clear direction, are inconsistent over the course of time, and can be fraught with 
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the biases of the individuals performing the rating or applying weights to the quantitative 

measures. Subsequently, poor decision making can result when based on these techniques. 

Deploying more sophisticated quantitative modeling techniques that utilize machine 

learning algorithms can be more difficult to implement in practice. However, these tech-

niques can provide a significantly more objective view of a firm’s supply chain risk than 

the qualitative rating systems frequently employed. In this research, we overcome this bar-

rier by demonstrating a methodology that applies available techniques to a LVHV firm’s 

supply chain data set. 

With respect to risk identification in supply chains, most research focuses on higher 

volume industries such as automotive and consumer packaged goods and not on LVHV 

industries like nuclear power plant construction [11, 12, 13, 14, 15, 16]. Furthermore, few 

if any comprehensive quantitative studies based on empirical data have been conducted 

to determine the factors that affect supply chain reliability. In this research we address 

this gap by proposing a multinomial logistic regression machine learning model based on 

actual industry data with the purpose of predicting the reliability of sourcing a product 

within the nuclear power plant construction industry. 

We use The American Production and Inventory Control Society’s (APICS) Supply 

Chain Operations Reference (SCOR®) Model as a basis for our definition of reliability and 

as the dependent variables in the proposed models. The SCOR® Model was developed by 

practitioners and is an industry-respected guide to improve the performance of supply chain 

processes within organizations [160]. The SCOR® Model proposes a set of performance 

attributes, which are a grouping of metrics. The performance attributes are (1) reliability, 
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(2) responsiveness, (3) agility, (4) cost, and (5) asset management efficiency. Reliability is 

defined as “perfect order fulfillment” and consists of four metrics. These metrics include 

(1) the percentage of orders delivered in full, (2) delivery performance to customer commit 

date, (3) documentation accuracy, and (4) perfect condition. As a result of the data avail-

able, the proposed model aims to predict reliability in terms of three of the four metrics: 

(1) delivery performance to customer commit date (on-time), (2) documentation accuracy 

(perfect documentation), and (3) perfect condition (perfect quality). Logistic regression is 

an appropriate method given that we are predicting the probability of success of a system 

based on a number of factors. The resulting model has practical implications for supply 

chain professionals in that it can be used to compare the reliability of suppliers during the 

supplier selection process or as input to predicting the reliability of a given supply chain 

system [161]. 

We categorize the explanatory variables in the model as being supplier-specific, purchase-

specific, or item-specific. Supplier-specific variables include attributes inherent to an in-

dividual supplier such as core competency, quality program sophistication, and size of the 

firm. Regional factors that affect a supplier’s reliability may be shared by multiple suppliers 

simultaneously and include the susceptibility to natural disasters, government unrest, and 

transportation challenges. Because this information wasn’t readily available in the data 

sets used for this research, we have chosen to use supplier location data (country, state, 

postal code) as a proxy. Purchase-specific variables include such factors as the quality 

requirements imposed on the supplier, whether or not the purchase was made generically 

or for a specific product that the firm manufactures, the timing of the purchase, expected 
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lead time, and the value of the order. The third type of explanatory variables investigated 

are those that are specific to the item or service being procured. Examples of this type of 

variable include the type of item (casting, forging, etc.) being procured, the level of quality 

required, and the value of the item to name a few. 

This research makes key contributions to the current literature on supply chain risk 

management in that we propose an implementable method to quantify procurement risks. 

Specifically, we develop a multiple logistic regression model to predict the reliability of a 

procurement in a LVHV supply chain. We confirm our model using 10-fold cross validation 

and assess the results using a set of performance metrics. Lastly, we test the significance 

of explanatory variables within the model and draw conclusions about the underlying data 

set based on the observed results. The proposed method improves upon existing qualitative 

methods and provides a framework for practitioners to improve proactive decision making 

by predicting the reliability of a procurement. 

The remainder of this chapter is organized as follows. Section 4.2 describes the data 

and variables used to build the model. The methodology used is found in Section 4.3. In 

Section 4.4, we analyze the numerical results of the model and draw conclusions in Section 

4.5. 

4.2 Data Description 

The data used in this model is actual data collected within a firm’s enterprise resource 

planning (ERP) system. The data set includes a total of 3,784 shipments on 2,928 purchase 

order (PO) line items received from 157 suppliers across one full calendar year and is rep-
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resentative of a typical year for the firm. In total, 42 explanatory variables are included 

in building the models within the scope of this research. Explanatory variables were se-

lected based on practitioner knowledge as well as availability within the ERP system. Each 

of the explanatory variables are organized into one of three groups: (1) supplier-specific 

(supplier), (2) purchase-specific (purchase), and (3) item-specific (item). Supplier-specific 

variables are representative of factors specific to the firm providing the good or service. Ex-

amples include the quality program qualifications that the firm holds, the firm’s geographic 

location (state, country), and the volume of sales the firm has received from the supplier. 

Factors associated with the specific purchase order represent purchase-specific variables 

and include the quality requirements imposed on the purchase order, the quantity of items 

or services included on the purchase order, and the expected lead time for the purchase 

order. Item-specific variables include those elements that are associated with the item or 

service being purchased. Examples include the product family to which the item or service 

belongs, the program that the item or service is being purchased for, and the activities that 

the firm will be requested to perform in order to provide the item or service. Seventeen 

variables comprise the supplier grouping, 18 are included in the purchase group, and seven 

variables are incorporated in the item group. A description of each variable within its re-

spective group is included in Tables 4.1- 4.3 along with the variable’s type and the number 

of levels (if a binary or categorical variable) that comprise each. 
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Table 4.1: Description of explanatory variables related to the supplier. 
i Definition Type Levels 

1 Supplier: The supplier providing the firm the good or service. Categorical 158 

2 PO Line Items: The number of line items received from a respective supplier within the current year and prior three Discrete -

years. 

3 POs: The number of purchase orders received from a respective supplier within the current year and prior three years. Discrete -

4 Rework POs: The number of purchase orders received with rework completed by the respective supplier within the Discrete -

current year and prior three years. 

5 Level 1 Qualifications: The total number of the most rigorous quality program qualifications that the respective supplier Discrete -

has been qualified to by the purchaser (example: ASME code, etc.). 

6 Level 2 Qualifications: The total number of the second most rigorous quality program qualifications that the respective Discrete -

supplier has been qualified to by the purchaser (example: 10CFR50 App B, 10CFR21, welding, non-destructive 

examination, etc.). 

7 Level 3 Qualifications: The total number of the third most rigorous quality program qualifications that the respective Discrete -

supplier has been qualified to by the purchaser (example: ISO 9001, MIL-STD, etc.). 

8 Level 4 Qualifications: The total number of the second least rigorous quality program qualifications that the respective Discrete -

supplier has been qualified to by the purchaser (example: qualified questionnaire, data assessment, etc.). 

9 Level 5 Qualifications: The total number of the least rigorous quality program qualifications that the respective supplier Discrete -

has been qualified to by the purchaser (example: no quality program required). 

10 Highest Qualification: The most rigorous quality program qualification to which the respective supplier has been Discrete -

qualified by the purchaser (Level 1=Most, Level 5=Least). 

11 Lowest Qualification: The least rigorous quality program qualification to which the respective supplier has been Discrete -

qualified by the purchaser (Level 1=Most, Level 5=Least). 

12 Qualification Range: The difference between the most rigorous and least rigorous quality program qualification to Discrete -

which the respective supplier has been qualified by the purchaser (Level 1=Most, Level 5=Least). 

13 Qualifications: The total number of quality program qualifications to which the respective supplier has been qualified Discrete -

by the purchaser. 

14 Core Competency: The defining capability with regard to a product or service that the respective supplier provides the Categorical 36 

purchaser. 

15 Country: The country where the respective supplier is located. Categorical 9 

16 State: The state, if within the United States, where the respective supplier is located. Categorical 29 

17 Sales: The total value of all purchase orders provide by the respective supplier to the purchaser within the current year Continuous -

and prior three years combined. 
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Table 4.2: Description of explanatory variables related to the purchase order. 
i Description Type Levels 

18 Expected Lead Time: The number of days between the date that the contract was placed and the expected contractual Discrete -

date of receipt. 

19 Expected Receipt Date: The expected date of receipt. Discrete -

20 Date PO Line Created: The date that the purchase order line item was initiated to the respective supplier. Discrete -

21 PO Line Quantity: The quantity of products/services on the respective purchase order line item that the respective Discrete -

supplier is expected to deliver. 

22 Multiple Receipts per Line: Designation of whether multiple shipments were received by the purchaser associated with Discrete -

each purchase order line item placed to the respective supplier. 

23 Rework: Designation of whether or not the purchase order line item required rework activities at the respective supplier. Binary 2 

24 Quarter and Year of Receipt: The quarter and year that the shipment was received by the purchaser from the Discrete -

respective supplier. 

25 Month and Year of Receipt: The month and year that the shipment was received by the purchaser from the respective Discrete -

supplier. 

26 Level 1 Qualification Requirements: The total number of the most rigorous quality program requirements contained Discrete -

within the purchase order (example: ASME code, etc.). These purchase order requirements correspond to the 

qualifications of the respective supplier (Level 1 Qualifications). 

27 Level 2 Qualification Requirements: The total number of the second most rigorous quality program requirements Discrete -

contained within the purchase order (example: 10CFR50 App B, 10CFR21, welding, non-destructive examination, etc.). 

These purchase order requirements correspond to the qualifications of the respective supplier (Level 2 Qualifications). 

28 Level 3 Qualification Requirements: The total number of the third most rigorous quality program requirements Discrete -

contained within the purchase order (example: ISO 9001, MIL-STD, etc.). These purchase order requirements 

correspond to the qualifications of the respective supplier (Level 3 Qualifications). 

29 Level 4 Qualification Requirements: The total number of the least rigorous quality program requirements contained Discrete -

within the purchase order (example: qualified questionnaire, data assessment, etc. ). These purchase order requirements 

correspond to the qualifications of the respective supplier (Level 4 Qualifications). 

30 Highest Qualification Requirement: The most rigorous quality program requirement contained within the purchase Discrete -

order (Level 1=High, Level 5=Low). 

31 Lowest Qualification Requirement: The least rigorous quality program requirement contained within the purchase Discrete -

order (Level 1=High, Level 5=Low). 

32 Qualification Requirements: The total number of quality program requirements contained within the purchase order. Discrete -

33 Quality Requirements: The total number of quality requirements (in addition to quality program requirements) Discrete -

contained within the purchase order (example: dimensional, inspection, documentation, etc.). 

34 Program Family or Generic: The designation of whether or not the purchaser has assigned the item or service being Binary 2 

purchased to a product line for consumption after receipt. 

35 Value: The total amount paid by the purchaser for the respective item or service associated with an individual purchase Discrete -

order and line item. 
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i 

Table 4.3: Description of explanatory variables related to the item being purchased. 
Definition Type Levels 

36 Commodity: The primary coding system used by the firm to group the item/service being procured. Categorical 40 

37 Item/Service Identifier: A coding system used by the firm to identify complexity of the item or service being procured Categorical 10 

(example: assembly, raw material, etc.). 

38 Item Family: A secondary coding system used by the firm to group the item/service being procured. Categorical 40 

39 Service Family: Similar to the commodity coding system, an identifier that groups the item being procured into families Categorical 24 

of procurements. 

40 Program: The designation that the purchaser has assigned the item or service being purchased that describes the Categorical 54 

specific product line that will use the procurement. 

41 Program Family: The designation that the purchaser has assigned the item or service being purchased that describes the Categorical 9 

family of product lines that will use the procurement. 

42 Activities: The total number of activities that the supplier will be asked to perform regarding the item or service being Discrete -

procured on an individual purchase order. 

We incorporate all 42 explanatory variables into seven full training models. Each of 

the seven models utilizes a dependent variable that represents one or more than one of 

the combinations of the three measures that comprise reliability as defined by the SCOR® 

model. The dependent variables are binary variables and represent whether or not an item 

or service associated with a purchase order line item was delivered (1) on-time to the 

respective contractual delivery date, (2) with perfect documentation accuracy the first time, 

and/or (3) with perfect quality the first time. Table 4.4 summarizes the seven combinations 

of the dependent variables that represent reliability as well as the aggregated favorable 

(reliable) and unfavorable (unreliable) responses of each across the data set used. Figure 

4.1 summarizes the distribution of supplier performance for the seven reliability metrics. 
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Table 4.4: Summary of reliability metrics. 
Model (r) Reliability Metric / Dependent Variable Reliable Unreliable n 

On-Time 91.70% 8.30% 3,784 

Perfect Documentation 65.38% 34.62% 3,784 

Perfect Quality 89.30% 10.70% 3,784 

On-Time + Perfect Documentation 62.00% 38.00% 3,784 

On-Time + Perfect Quality 82.21% 17.79% 3,784 

On-Time + Perfect Quality + Perfect Documentation 56.71% 43.29% 3,784 

Perfect Quality + Perfect Documentation 59.62% 40.38% 3,784 
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Figure 4.1: Supplier reliability distributions. 
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4.3 Methodology 

To prepare the master data set, we joined a number of data tables within the firm’s ERP 

system to arrive at the set of dependent and independent variables to test for significance 

within the model. Initially, data sets representing multiple years of transactions were ana-

lyzed. However, after reviewing the data available, we determined that one year of data was 

sufficient to test and build the intended models with consideration for a reasonable amount 

of computing time. Next, we performed a summary analysis on the data set across the 

dependent variables to better understand the patterns in the underlying data. In each of the 

dependent variables, the two classes (reliable and unreliable) were found to be imbalanced 

and not represented equally. Imbalanced data sets can cause problems for data mining 

and statistical learning since traditional machine learning algorithms have a tendency to 

classify data points in the class that occurs most frequently [162]. Several methods have 

been proposed to deal with imbalanced data sets and include random over-sampling, ran-

dom under-sampling, Tomek links, condensed nearest neighbor rule, one-sided selection, 

neighborhood cleaning rule, synthetic minority over-sampling technique (SMOTE), and 

hybrids of these approaches [163]. Other authors have reported that one holdout sampling 

method, k-fold cross-validation, is the best method to use for model selection when applied 

to real world data sets and when imbalanced data sets are involved [164]. More specifi-

cally, 10 seems to be an optimal number of folds when trying to optimize the time it takes 

to complete a test while at the same time minimizing the bias and variance associated with 
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the validation process [165]. As a result, we chose to employ 10-fold cross validation to 

validate the predictor variables within our model and as the standard way to predict the 

error rate of our model. 

In 10-fold cross validation, the data set is divided into 10 parts in which the class is 

represented in approximately the same proportions as in the full dataset. Next, the model, 

in our case a logistic regression model, is fit on the training set (nine-tenths of the data) and 

then tested on the test set (one-tenth of the data set). Each of the 10 parts is then held out in 

turn and the model trained on the remaining nine-tenths. The error rate is then calculated 

on the test set. The experiment is repeated 10 times. As a result, the model is built a total 

of 10 times on different training sets and tested using 10 test sets. Finally, the 10 error 

estimates are averaged to yield an overall error estimate. [166] 

For the purposes of our research, we utilize multiple logistic regression to estimate 

the reliability of a supplier within a LVHV supply chain. Logistic regression is a type of 

regression method belonging to a family of generalized linear models that evaluate the ef-

fects, include relevant interactions, and estimate response probabilities. The response and 

explanatory variables within the model can be categorical, discrete, binary, or continuous. 

Logistic regression is appropriate when the response variable describes the probability of 

an event. The method is used in a wide range of applications such as credit-scoring and 

genetics. In multiple logistic regression the response variable is based on more than one 

explanatory variable. Here we apply multiple logistic regression to predict the probabil-

ity of success of purchases made in a LVHV supply chain, which takes the general form 

outlined in Equation (4.1) below. [167] 
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logit [⇡r (x)] = ↵ + 1x1 + 2x2 + ... + ixi (4.1) 

Where: ⇡r (x) = P (Y = 1) at values x = (x1, ...,  xp) of p predictors 

Y is a binary response variable (4.2) 

xi is an explanatory variable (4.3) 

↵ is the intercept parameter (4.4) 

i is the effect of xi on the log odds that Y = 1  

r is the index for the reliability model; r = 1, ...,  7 

i is the index for dependent variables; i = 1, ...,  42 

A variety of performance measures are used to evaluate the learning method being em-

ployed. Classifiers are typically evaluated by a confusion matrix, which groups the number 

of correctly classified positive and negative examples (true positive and true negative) and 

the number of incorrectly classified positive and negative examples (false positive and false 

negative) [166]. The general form of a confusion matrix is shown in Table 4.5. 

Table 4.5: General form of confusion matrix for different outcomes of a two-class predic-
tion. 

Predicted Class 

Unreliable Reliable 

Actual Class 
Unreliabile 

Reliable 

True Positive (TP) False Negative (FN) 

False Positive (FP) True Negative (TN) 
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In this analysis, true positive represents the minority class (failure/unreliable) and true 

negative represents the majority class (success/reliable), which is a result of how the ma-

chine learning algorithm used to build the logistic regression models defines probability 

of success. More specifically, unreliability is defined as success. Predictive accuracy is 

a metric that can be derived from the confusion matrix and is defined in Equation (4.5). 

[168] 

TP  + TN  
Accuracy = (4.5)

TP  + FP  + TN  + FN  

Where: TP  = True Positive 

TN  = True Negative 

FP  = False Positive 

FN  = False Negative 

When the data set is imbalanced a confusion matrix may not be sufficient to determine 

classifier performance and more robust performance measures must be used. Examples 

include the Receiver Operating Characteristic (ROC) curve, the Area Under the ROC Curve 

(AUC), precision, recall, and the F-value. The ROC curve represents the best decision 

boundaries for relative costs of true positive and true negative. The AUC is sometimes 

used because, in general, the larger the area the better the model. Additionally, the AUC 

can be interpreted as the probability that the classifier ranks a randomly chosen positive 
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instance above a randomly chosen negative one. Precision and recall are derived from the 

confusion matrix (see Equations (4.6) and (4.7)). 

P recision = 
TP  

(4.6)
TP  + FP  

TP  
Recall = (4.7)

TP  + FN  

In general, the goal for imbalanced data sets is to improve the recall without reducing 

the precision. However, the two measures can be in conflict since when increasing the 

true positive for the minority class, the number of false positives can also be increased. 

In this case, the precision will reduce. The F-value (see Equation (4.8)) is another metric 

that is sometimes used to determine performance of a classifier. The F-value represents the 

tradeoffs between precision and recall and presents a single value that reflects the goodness 

of a classifier in the presence of rare classes. The parameter corresponds to the relative 

importance of precision vs. recall and is typically set to 1. [168, 166] 

(1 + 2) ⇥ Recall ⇥ P recision 
F value = (4.8)

2 ⇥ Recall ⇥ P recision 
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In addition to determining the accuracy by which the model is predicting the classes, 

we are also interested in better understanding the effect of each of the independent vari-

ables within the model. We use the odds ratio for each independent variable as a basis. 

If we define ⇡ as the probability of success, it follows that the probability of failure is 

(1 ⇡). Success and failure are relative and depend upon how the dependent variable 

class is defined in the logistic regression model. In he case of this study, success is defined 

as unreliability and failure is defined as reliability. Odds is then defined as ⌦ = ⇡ or(1 ⇡) 

the probability that success (unreliable event) occurs divided by the probability that failure 

(reliable outcome) occurs. It follows that the odds ratio (✓) is a measure of the odds of one 

treatment (⌦1) in relation to another (⌦2), ✓ = ⌦
⌦ 

2

1 . For example, in our model, one of the 

independent variables is the supplier of the good or service. The odds of a particular sup-

plier, Supplier A, can be described as the probability of Supplier A not delivering on-time 

over the probability of Supplier A delivering on time (⌦A = ⇡A ). Likewise, the odds (1 ⇡A) 

of all other suppliers excluding Supplier A (⌦¬A = (1 
⇡¬ 
⇡ 
A 
¬A) ) can be calculated. The odds 

ratio for any supplier is then the quotient of the odds of that particular supplier and the odds 

of all other suppliers (✓A = ⌦A ). In logistic regression, the exponential function of the ⌦¬A 

regression coefficient is the odds ratio (e i = ✓i) associated with the respective explanatory 

variable (xi). [167, 169] 

In order to determine the significance of the independent variables in the model, we 

calculate a p-value from the odds ratio based on an approach proposed by Altman et al. [? ], 

which uses the formulae listed in Equations (4.9)-(4.12) below. By taking this approach, we 

test the null hypothesis (Ho : i = 0)  to determine if the coefficient ( i) of each dependent 
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variable (xi) has a significant effect. The upper (u) and lower (l) cutoff limits for the 95% 

confidence interval were selected as u = 1.2 and l = 0.8 respectively. 

Estimate = log(✓) (4.9) 

log(u) log(l)
Standard Error = (4.10)

2 ⇥ 1.96 
Estimate 

z = (4.11)
Standard Error 

⇥ �⇤ 
p value = exp ( 0.717 ⇥ z) 0.416 ⇥ z 2 (4.12) 

4.4 Numerical Results 

For modeling and evaluation, we employed the use of the Waikato Environment for 

Knowledge Analysis (Weka) suite of machine learning software (version 3.8.2) developed 

by the Machine Learning Group at the University of Waikato. Weka is an open source 

collection of machine learning algorithms for data mining tasks and contains tools for data 

pre-processing, classification, regression, clustering, association rules, and visualization. 

[170] 

In all, seven multinomial logistic regression models were built using the 42 explanatory 

variables described in Tables 4.1-4.3 and tested using 10-fold cross validation. Each model 

was subsequently evaluated using a set of standard performance metrics (Equations (4.5)-

(4.8)) and explanatory variables were evaluated for significance within the model. 
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4.4.1 Multiple Logistic Regression Models 

Tables B.1-B.7 in the Appendix summarize the results of the full multiple logistic re-

gression training models. The coefficient ( i), odds ratio (OR), and p-value are listed for 

each of the explanatory variables (i = 1, ..., 42) and levels in each of the reliability models 

(r = 1, ..., 7). An index, m (m = 0, ..., 442), is introduced to represent the levels of each 

explanatory variable. 

Weka reports a weighted average of all of the key metrics. Table 4.6 shows a summary 

of those results of the performance metrics for each of the seven training models after vali-

dation. All models were found to be reasonably accurate in predicting the respective unre-

liability metric with accuracies ranging from 0.7384 for On-Time+Perfect Quality+Perfect 

Documentation (r = 6) to 0.9212 for the On-Time model (r = 1). Using AUC as an overall 

performance metric, the Perfect Documentation (r = 2) and On-Time+Perfect Documen-

tation (r = 4) models demonstrated the largest areas under the ROC curve with values of 

0.8140 and 0.8100 respectively. Perfect Quality (r = 3) had the lowest AUC of the seven 

models, 0.7270. 

Table 4.6: Summary of classification results. 
Model (r) Unreliability Metric / Dependent Variable Accuracy Precision Recall AUC F-value 

1 On-Time 0.9212 0.9080 0.9210 0.8010 0.9120 

2 Perfect Documentation 0.7756 0.7710 0.7760 0.8140 0.7710 

3 Perfect Quality 0.8972 0.8770 0.8970 0.7270 0.8820 

4 On-Time + Perfect Documentation 0.7666 0.7630 0.7670 0.8100 0.7630 

5 On-Time + Perfect Quality 0.8322 0.8080 0.8320 0.7520 0.8120 

6 On-Time + Perfect Quality + Perfect Documentation 0.7384 0.7370 0.7380 0.7980 0.7360 

7 Perfect Quality + Perfect Documentation 0.7423 0.7400 0.7420 0.7950 0.7380 

124 



www.manaraa.com

�

�

�

�

4.4.2 Significance of Explanatory Variables 

As noted in the previous section, the 42 explanatory variables were able to predict rea-

sonably well the unreliability metrics chosen in this study. In this section, we explore the 

significance of the explanatory variables in making those predictions in more detail. As 

a first-level analysis, we analyzed the most positive and most negative values of i for 

each explanatory variable (i) across all seven models. In general, coefficients for those 

variables associated with specific suppliers (i = 1, ..., 17) had the most positive and nega-

tive correlation coefficients across all levels, which indicates that suppliers who have been 

unreliable (or reliable) in the past are also likely to replicate their respective performance 

in the future. For example, one supplier (x1,5) demonstrated a parameter value ( 1,5) of 

25.28, which corresponds to an odds ratio (✓1,5) of 9.25 ⇥ 1010 for model r = 1  and indi-

cates that this supplier has a 9.25 ⇥ 1010 greater odds of not delivering the products they 

supply on-time when compared to other suppliers. 

Five variables, had coefficients equivalent to zero ( i,m ⇡ 0) across all seven models. 

i,m = 0  indicates that any value of the variable associated with the coefficient results in 

an equal probability of outcome. Those variables included the sales volume procured from 

the specific supplier (x17,244), the expected lead time of procurement (x18,245), the date the 

purchase order was created (x20,247), the quantity of items on the purchase order (x21,248), 

and the value of the purchase order (x35,264). Specific to the models developed in this 
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research, the aforementioned variables do not appear to have an effect on the reliability of 

the procurement. 

In addition to analyzing the groupings of each explanatory variable (represented by i), 

each level within categorical explanatory variables (represented by m) was also analyzed. 

Figure 4.2 includes the five highest positive coefficients (+ im) and the five lowest negative 

coefficients ( im) within each model. As noted above, e im = ✓im where ✓im is the odds 

ratio for variable i level m. As im ! +1 , ✓im ! +1. Likewise, as im !� 1 , 

✓im ! 0. In practice, as im ! +1 and ✓im ! +1, the associated variable increases the 

probability of a successful (unreliable) outcome with respect to an unsuccessful (reliable) 

outcome when that particular variable increases or in the case of a categorical variable, 

the particular level of the variable is present. In contrast, as im !� 1 and ✓im ! 0, 

the associated variable decreases the probability of a successful (unreliable) outcome with 

respect to an unsuccessful (reliable) outcome when the variable increases or the level of 

the variable is present. For example, in the model that estimates the probability of not 

delivering the particular product or service on-time (r = 1), the explanatory variable State 

(x16) has 29 different levels. In other words the firm received product from 29 different 

states within the United States of America. For one of the states (m = 218) 16,218 = 

+1.64, which corresponds to ✓16,218 = 5.16 ⇥ 1000 . This is analogous to saying that the 

odds of not delivering a product on-time from State 218 (x16,218) is 5.16⇥1000 times greater 

than not delivering a product on-time when sourced from any of the other 28 states in the 

data set. 
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�Figure 4.2: Top five and bottom five coefficient ( im) values for each model. 
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Variables with ✓im !� 1 and ✓im ! +1 can both have significance within the 

model. We applied Equation (4.12) to derive a p-value (pim) and assessed each variable’s 

(and level’s) significance at a 95% confidence level (↵ = 0.05) within each model. The 

reader is referred to Tables B.1-B.7 in the Appendix for p-values associated with all vari-

ables within all of the full models. Of the 442 variable (i) and level (m) combinations in 

each model, the prediction model for On-Time Delivery (r = 1) had the highest proportion 

(0.9163) of significant variables and levels. The model predicting the combination of on-

time delivery, perfect quality, and perfect documentation (r = 6) had the lowest proportion 

(0.8194) of significant variables and levels. Figure 4.3 summarizes the overall performance 

of the seven models with respect to AUC and accuracy as a function of the proportion of 

variables and levels. Overall, the On-Time (r = 1) prediction model seems to demonstrate 

the best combination of proportion of significant variables and levels and performance. 

Figure 4.3: Proportion of variables and levels found to be significant as a function of AUC 
and accuracy. 
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Of all the variables and levels tested for significance, 70.6% were found to have p 

values < 0.05 in all seven of the models. Thus, in those instances we fail to reject 

the null hypothesis (Ho : i = 0). This proportion of significant variables and levels is 

heavily weighted by the number of suppliers in the study. Conversely, only 10 (2.3%) 

of the variables were not found to be significant across any of the seven models - PO 

Line Items (x2,158), POs (x3,159), Rework POs (x4,160), Sales (x17,244), Expected Lead Time 

(x18,245), Expected Receipt Date (x19,246), Date PO Line Created (x20,247), PO Line Quan-

tity (x21,248), Quality Requirements (x33,262), and Value (x35,264). Three variables - Level 2 

Qualifications (x6,162), Qualifications (x13,169), and Qualification Requirements (x32,261) -

were only found to be significant (p value < 0.05) in the On-Time (r = 1) model. Other 

variables were found to be significant in some models, but not all models. Variables with 

several levels were found to have some levels that were significant while other levels were 

not. Figures 4.4 - 4.7 summarize the significant variables (p values < 0.05) in each of 

the seven models, which are noted using the symbol . 

129 



www.manaraa.com

Figure 4.4: Summary of significant variables (1 of 4). 
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Figure 4.5: Summary of significant variables (2 of 4). 
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Figure 4.6: Summary of significant variables (3 of 4). 
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Figure 4.7: Summary of significant variables (4 of 4). 
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Of particular interest in this study are the results that indicate which variables do not 

have a significant impact on the reliability of a procurement regardless of the reliability 

metric used as the dependent variable. The 10 variables (noted above) fall into two of the 

three explanatory variable groups - related to the supplier and related to the purchase order. 

More specifically, the volume of work awarded to the supplier (x2,158, x3,159, x17,244) or the 

amount of rework (x4,160) completed by the supplier on the purchase order over a four 

year time span was not found to be a significant factor in a supplier’s reliability. This is 

somewhat contradictory to common logic, which would suggest that the more a firm works 

with a supplier, the more reliable they become. 

Of the six variables related to the purchase order that were not found to be significant 

contributors to reliability, three (x18,245, x19,246, x20,247) correspond to the timing of the 

procurement and more specifically, the expected lead time for the procurement, the time 

of year the procurement is expected, and when the purchase order was created. Although 

interesting, additional investigation is required if these results indicate that seasonality with 

respect to these variables does not exist. 

The volume on the purchase order both in terms of quantity (x21,248) and value (x35,264) 

were not found to be significant contributors in any of the reliability models. Like the 

historical volume awarded to the supplier, the volume placed on a specific purchase order 

does not appear to contribute to the reliability of a procurement. Lastly, the number of 

qualification requirements (x32,261) indicated on the purchase order was also found not be 

significant, which suggests that neither more or less requirements improve or reduce the 

reliability of a procurement. 
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4.5 Conclusions 

In this chapter, we developed seven reliability prediction models using a combination of 

multinomial logistic regression and 10-fold cross validation based on actual data collected 

within a LVHV supply chain. The dependent variables within each model were based on 

the APICS SCOR® Model definition for reliability. In the logistic regression model, suc-

cess was defined as unreliability. More specifically, the seven models were constructed to 

predict the probability that a purchase is not delivered On-Time, without Perfect Documen-

tation, without Perfect Quality, and combinations thereof. The models were based on a 

total of 42 independent variables. Each variable and level within each model was tested for 

statistical significance (95% confidence level). 

Supplier related variables describing the volume of work awarded to the supplier (pur-

chase order line items, purchase orders, reworked purchase orders, and total sales) through-

out the year were not found to be significant contributors to reliability. Similarly, variables 

associated with the purchase order itself such as the expected lead time, the time of year 

that the receipt was expected, when the purchase order was created, the number of items 

on the purchase order line, the total number of quality requirements, or overall value of the 

purchase order were found to not have any significance with respect to reliability. Further, 

in the majority of cases the supplier chosen for the procurement, the core competency of 

the supplier, and the supplier’s location were found to be significant contributors. All vari-

ables associated with the item itself demonstrated significance in at least two of the seven 

models. 
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In addition to statistical significance of individual explanatory variables and categories 

within explanatory variables, metrics for each model were analyzed to assess the ability 

for the explanatory variables to predict reliability. All classification metrics for all models 

indicated a relatively high level of accuracy (0.7384-0.9212), precision (0.7370-0.9080), 

recall (0.7380-0.9210), AUC (0.7270-0.8140), and F-measure (0.7360-0.9120). 

The application of the models described within this chapter has practical significance 

in predicting the reliability/unreliability of a purchase within a LVHV supply chain. The 

data used to build the models described herein is readily available in most firms that have 

ERP systems. For those firms that do not employ systems to readily collect the data de-

scribed, implementing sufficient data collection streams would not be difficult. Supply 

chain professionals can use the resulting models to assess and compare suppliers, items 

to be purchased, or purchase order characteristics across one or more than one of seven 

measures of reliability. In addition, where sole or single sources of supply are required, 

the firm making the purchase will have a better understanding of the reliability and can 

decide to take appropriate measures to mitigate the associated risks. The features of this 

approach are an improvement over methods currently employed in the industry. The mod-

els presented within this chapter are specific to the data sets upon which they were built. 

However, the methods to build such models as those described have the potential of being 

transferrable to other firms’ data when combined with specific knowledge of the business. 

Several areas of future work are recommended. The data set used to develop these 

models was contained to one year. Using the same methods described here to construct 

models on other supply chains would be interesting as well as a useful extension. Like-
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wise, including additional explanatory variables, the interaction of explanatory variables, 

as well as exploring the use of other machine learning classification algorithms in com-

parison to the multinomial logistic regression methodology described here would serve to 

further substantiate our approach. One example of a variable that was not available at the 

time of this study relates to the single or sole source position of the supplier in the supply 

chain. Understanding the impact of these types of suppliers on the reliability of procure-

ments would be beneficial in the supplier selection process as well as during risk mitigation 

planning. Lastly, we plan to deploy the model in a real-world application in order to further 

validate the prediction capabilities of the models. 
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CHAPTER 5 

CONCLUSIONS 

5.1 Summary 

The focus of this research was to develop foundational methods for practitioners in 

a LVHV supply chain to predict, evaluate, and mitigate risks within the supply chain in 

advance of those risks being realized. Although developed using data and case studies from 

a LVHV supply chain, the methodology has potential application in other types of supply 

chains. The ability to organize a supply chain schematically, identify potential risks, assess 

the overall reliability of the supply chain, and predict the reliability of a procurement are 

all activities that are important to a firm’s success. The inability to perform these tasks with 

some degree of success can have catastrophic consequences to a firm’s financial stability 

and to an entire industry. The supply chains that are used to construct nuclear power plants 

are one example of an industry that has suffered such consequences. 

The methods discussed in this dissertation outline an approach using fault tree analysis 

to organize a supply chain schematically from the bill of materials of the product being 

sourced. Next, we leveraged the structure of the fault tree in combination with Boolean 

algebra to evaluate the overall reliability of the supply chain. Subsequently, we developed 

optimization models to identify potential risks as well as mitigation activities to maximize 

the supply chain system reliability under budgetary constraints. Lastly, we defined reliabil-

138 



www.manaraa.com

ity using standard industry metrics and developed a multinomial logistic regression model 

to predict the reliability/unreliability of a procurement using data from a LVHV firm. Con-

tributions to the literature were made in each of the areas discussed. 

In the sections that follow, we draw conclusions more specifically within each area of 

the research and discuss recommendations for future work. 

5.2 Model Supply Chain Risk 

In this dissertation, we introduced a new application for fault tree analysis, which 

served as a foundational element of our research. The use of a fault tree to represent a 

supply chain enabled the use of the techniques associated with fault tree analysis to evalu-

ate the supply chain as a system. Further, by using a product’s bill of materials as the basis 

for constructing the fault tree, the method provides the flexibility to evaluate the supply 

chain at various tiers and from a variety of perspectives. Case studies using examples of 

products sourced in a LVHV industry were presented to demonstrate the practical applica-

tion of such an approach. 

After constructing the fault tree, we calculated the overall system unreliability of the 

supply chain. Next, four scenarios that practitioners face were proposed to demonstrate 

the usefulness of the concept as an evaluation tool when making procurement decisions. 

The scenarios included adding a second redundant supplier, improving the existing sup-

plier, replacing the existing supplier with an improved supplier, and adding a second im-

proved supplier. A cost model was proposed and applied to each of the four scenarios 

being evaluated. Subsequently, the system unreliability was re-calculated for each of the 
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four scenarios. The tradeoff between the mitigation cost and unreliability improvement 

were evaluated for each of the scenarios in comparison to the baseline scenario where no 

modifications to the supply chain were made. 

The results of the study indicated that introducing a redundant supplier with improved 

performance provided the greatest reduction in system unreliability at a slightly lower total 

cost than adding an equivalently unreliable supplier. Although specific to the supply chain 

and decisions posed for each scenario, the results demonstrated the approach as a tool for 

supply chain professionals to evaluate seemingly indistinguishable decision outcomes in 

an objective and quantitative way. Furthermore, the method provides an opportunity to 

evaluate the potential decision outcomes and impact on the supply chain system prior to 

carrying out a procurement decision. In the absence of the tools presented, decisions are 

left to a high degree of subjectivity and made within silos without knowledge of other 

related decisions. The methodology presented provides a significant improvement to the 

current manner in which procurement decisions are made in LVHV supply chains. Further, 

greater visibility is given to the potential costs of decisions and higher risk areas within 

a supply chain system. In conclusion, the research presented here demonstrates that a 

complex supply chain can be organized as a system using a fault tree architecture and 

subsequently analyzed to assess risk. 

5.3 Mitigate Supply Chain Risk 

In the second of the three arms of the research presented in this dissertation, we built 

upon the concept of representing a supply chain as a fault tree based on a product’s bill 
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of materials and applied mixed integer programs to optimize the overall reliability of the 

system by selecting risk mitigating actions with consideration for budgetary constraints. 

More specifically, we developed two models and applied those models to LVHV firms 

that participate in two separate tiers of the nuclear power plant construction supply chain 

to demonstrate the robustness of the approach. The first firm studied is responsible for 

delivering the pressurized water reactor to the nuclear power plant. The second supply 

chain studied was a lower tier supplier providing a thrust bearing; a major component in 

the steam turbine, which is part of the pressurized water reactor. 

The first modeling approach presented, referred to as the PMM, focused on selecting 

risk mitigating actions that set the reliability of the minimal cut set within the fault tree 

equal to 100% reliability. Like before, suppliers are represented as basic events in the 

model and sets of suppliers comprise minimal cut sets. Although directionally helpful to 

apply risk mitigating actions on sets of suppliers in the supply chain, the PMM does not 

select the specific risk mitigation action to apply to a specific supplier. All risk mitigating 

actions were given a standard cost of $12,209, which represented the cost associated with 

improving a supplier’s reliability by 15% over their current performance. 

Extending the PMM, we developed an IMM. Although similar to the approach devel-

oped for the PMM, the IMM delivers additional information regarding the specific mitiga-

tion actions to take on specific suppliers. We selected four mitigation options with differ-

ent costs and associated reliability improvements to demonstrate the approach. In order to 

more effectively apply a mixed integer optimization program to the fault tree architecture, 

we converted the fault tree into a binary decision diagram using the component connection 
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method. Doing so reduced the mathematical complexities associated with optimizing di-

rectly on the fault tree and further enabled the model to select specific suppliers to mitigate 

within the supply chain. 

Both mitigation models were applied to two supply chains, run at a range of risk mit-

igation budgets, and results compared to one another. The results demonstrated the value 

and practical nature of the approach to supply chain professionals tasked with making miti-

gation decisions across two sizes and scopes of LVHV supply chains. Further, this research 

illustrated methods to select activities that should be undertaken to mitigate risk within the 

supply chain and simultaneously minimize risk while at the same time achieving budgetary 

goals. 

5.4 Quantify Supplier Risk 

The objective of the third topic outlined in this dissertation was to develop a mathe-

matical model to predict the reliability of a procurement in a LVHV supply chain. The 

explanatory variables in the model were selected based on the experience of supply chain 

professionals. Additionally, to prove the practical worthiness of the model, the underlying 

data describing each of the explanatory variables selected for the model had to be available 

via a firm’s ERP system. Using a set of 42 explanatory variables, we developed seven 

multinomial logistic regression models. Each model described supply chain reliability in 

terms of on-time delivery, first time hardware quality, first time documentation quality, and 

the combinations thereof. 
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Logistic regression was chosen as the modeling method because the response vari-

able describes the probability of an event. Ten-fold cross validation was applied to assess 

the performance of each of the seven models. In general, each model performed well 

(> 0.7200) across all of the performance metrics selected. In addition to analyzing the 

magnitudes of the coefficients of each variable, we tested the odds ratio for each of the 

explanatory variables and levels for statistical significance. 

Overall, the results indicated that variables associated with the supplier, the geographic 

location of the supplier, and the supplier’s core competencies were significant with respect 

to reliably supplying product to the firm. However, in general terms neither the volume of 

the product procured nor the timing of the procurement were found to be significant. These 

conclusions provide insight for the supply chain professional to focus more effort on the 

supplier and the suppliers’ attributes to manage the associated risks; whereas, less priority 

should be given to adjusting the quantity procured, managing the structure of the purchase 

order, or controlling the timing of the procurement. Further, the results correspond well 

with the observations made by Schlissel et al. [4] regarding the erosion of qualified and 

capable suppliers within the nuclear industry and further substantiate the need to invest 

time in the supplier selection process to ensure that suppliers are competent to complete 

the work requested of them. 

In conclusion, the logistic regression model developed as part of this research demon-

strates a practical method to predict the reliability of a procurement in a LVHV supply 

chain. In doing so, we were also able to provide insight as to the significant factors that 

affect reliability. Both of these results have practical significance in supply chain risk man-
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agement, improve a firm’s ability to more quantitatively understand the supply chain risks 

faced, and subsequently minimize the effects of those risks. 

5.5 Research Limitations and Future Work 

The research contained in this dissertation was limited to LVHV supply chains. Ex-

tending and testing these concepts across different supply chains in different industries 

would be both useful and interesting. 

In addition, although building off one another each of the three areas of research pre-

sented were done independently. Developing a software instrument that integrates the three 

areas together would have significant practical application. Doing so would also improve 

the applicability across supply chain practitioners of varying levels of computational ex-

perience. More specifically, the activities associated with constructing a fault tree from a 

firm’s bill of materials, converting the fault tree into a binary decision diagram, and apply-

ing the proposed optimization models is somewhat tedious. Automating and integrating 

these processes could prove useful as would tying the data streams used into a firm’s ERP 

system. 

The cost model presented as part of “Modeling Supply Chain Risk” was based on em-

pirical data. However, improving it and extending it into the areas described within “Miti-

gate Supply Chain Risk” would be useful. In addition, studying the cost sensitivity around 

budgets and the resulting risk mitigating decisions could have practical importance for 

supply chain budget managers. More specifically, expanding the cost modeling capability 

to include better insights into the marginal utility between the risk mitigation budget and 
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the resulting supply chain portfolio reliability could be useful in setting budgets, planning 

resources, and selecting suppliers. 

In both the “Modeling Supply Chain Risk” and “Mitigating Supply Chain Risk” areas 

presented, the supplier is assumed to be known by the firm. In practice, this is not always 

the case. For example, the data used in this research is not available for new suppliers 

that the firm is considering. On one hand, this further validates the efficacy and need for 

the model presented within the “Quantify Supplier Risk” research area. In contrast, if the 

supplier is unknown completely, the methods presented are difficult to implement. As a 

result, developing a method to predict a supplier’s reliability based on a set of attributes 

would be helpful. The work completed within this dissertation can serve as a basis to 

explore this area further. 

The approach presented to model the supply chain system as a fault tree assumes in-

dependence and a static state. However, in reality supply chains are neither independent 

nor static. We relaxed the independence assumption to some extent by integrating sup-

pliers and procurements with similar characteristics through the logistic regression model 

and underlying data sets. Exploring the dependence of suppliers, events, decisions, and 

consequences, across the supply chain in more detail is a worthy effort. The application 

of dynamic fault tree analysis, stochastic models, and other available methods is recom-

mended. Similarly, throughout this research we assumed that events were immediately 

repairable and did not investigate the effects that downtime or unrepairable events may 

have on the supply chain. 
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The methods described within this research effectively utilize probability as a basis for 

reliability. However, like downtime, we did not analyze the supply chains being studied in 

terms of the severities or the consequences associated with the definition of risk. Further, 

we did not extend our approaches into the financial impacts that decisions or risks may 

have on the firm’s overall financial performance. Paths to assess various metrics of risk 

using the methods described in this dissertation are recommended as future research and 

would have practical significance. 

The logistic regression model presented serves as a foundation for further research. 

First, it would be interesting to develop models for different supply chains and using dif-

ferent machine learning classification methods to compare results and test the overarching 

hypothesis that LVHV supply chains are in-fact different than other supply chain con-

structs. Furthermore, we did not include interaction variables within our model. This may 

also prove as a useful extension as well as the inclusion of additional explanatory variables. 

The variables included in the model were restricted to those collected by the firm. One ex-

ample of a variable that may have practical significance is related to a supplier’s sole or 

single source position within a firm’s supply chain. 

Lastly, we recommend implementing the concepts contained within this dissertation ei-

ther in part or in full within a LVHV firm to further validate the concepts proposed. When 

implemented decisions made should be logged and compared with the actual outcomes 

and costs incurred. For example, a supply chain professional may determine that adding a 

redundant supplier will reduce the overall risk within the portfolio to an acceptable level 

when developing a fault tree to represent the bill of material of the product being sourced. 
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After implementing the decision, the results should be monitored to determine if the over-

all reduction in portfolio risk was achieved. If the results predicted by the model were 

not realized, causes should be identified, and modifications should be made to tune the 

accuracy of the model. Similar analyses could be performed to determine the accuracy of 

the predicted results with respect to mitigating risks and allocating resources when a firm 

implements the optimization models presented within this research as part of their decision 

toolkit. 
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APPENDIX A 

SUMMARY OF NOTATION 
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Table A.1: Summary of notation used in Chapter 2. 
Notation Description 

F (t) probability that the system experiences at least one failure during a specified time period 

t time period; 52 weeks 

R(t) probability that the supplier makes all of its deliveries on time within the time interval 

fij (t) probability that the supplier has failed to deliver their respective service on time within the interval [0, t] 

i supplier 

j service 

fij annualized unreliability for basic service i sourced from supplier j 

xij annualized units of basic service i delivered on time by supplier j 

yij units of basic service i expected annually by supplier j 

n total number of basic services within supply chain 

m total number of suppliers within supply chain 

gOR 
k the gate unreliability of OR gate k 

gAND 
k the gate unreliability of AND gate k 

q the total number of gates within the fault tree 

k fault tree gate index 

FS Fault tree system unreliaiblity 
improvetij time (hours) invested annually to improve a supplier 

tonboard 
ij time (hours) invested annually to onboard a supplier 

toversightij time (hours) invested annually to provide oversight to maintain supplier 

u unreliability improvement ratio from s1 to s2 

e ⇡ 2.71828 

s1 initial state of unreliability of supplier j to deliver basic service i 

s2 improved state of unreliability of supplier j to deliver basic service i 

conboard 
ij cost of adding new supplier or replacing an existing with an improved supplier 
improvecij cost of improving an existing supplier 
oversightcij cost of providing overisight to a supplier to maintain performance 
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Table A.2: Summary of notation used in Chapter 3. 
Notation Description 

Ui the probability that cut set i occurs; unreliabilty of cut set i 

i minimal cut set index 

I set of all minimal cut sets 

xi binomial decision variable; xi = 1 if minimal cut set i is mitigated and 0 otherwise 

yj binomial decision variable; yi = 1 if supplier j is mitigated and 0 otherwise 

j supplier index 

J set of all suppliers 

Ji set of suppliers that are members of cut set i 

b total mitigation budget of the firm 

cj cost of mitigating supplier j 

cjk cost of mitigating supplier j with mitigation activity k 

Pj,`(j,!) the probability of supplier j in path ! with state ` 

! terminal 1 node path 

` state; ` = 0 if success state and ` = 1 if failed state 

Pj,! simplified notation for Pj,`(j,!) 

⌦ terminal 1 node paths 

J! set of suppliers contained in path ! 

k mitigation activity peformed on a supplier 

Pj,!,k the probability that supplier j along path ! given mitigation activity k was performed on supplier j 

yjk binary decision variable; yjk = 1 if mitigation activity k performed on supplier j and 0 otherwise 

w! 
rk the partial probability associated with each path (!) 

r the order of the supplier within path (!) 

|J! | all suppliers with path (!) beginning with the second (r = 2) supplier in the path 

k⇤ 
j mitigation selected for supplier j in the optimal solution 

uj unreliability of supplier j 

US unreliability of the system being studied 

UREA 
S unreliability of the system being studied; calculated using the rare event approximation 

RS reliability of the system being studied 

RPM  M  
S reliability of system being studied; calculated using the perfect mitigation model 

RIM  M  
S reliability of system being studied; calculated using the imperfect mitigation model 

S metric used to compare the perfrect and imperfect mitigation model differences of the system being studied 
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Table A.3: Summary of notation used in Chapter 4. 
Notation Description 

r index for the reliability model 

n number of purchase orders and line items 

i index for explanatory/dependent variables 

p number of predictors 

⇡r (x) probability that Y = 1  

Y binary response variable 

xi explanatory variable 

↵ intercept parameter 

i the effect of xi on the log odds that Y = 1  

⇡ probability of success 

a parameter corresponding to the relative importance of precision vs. recall 

⌦ odds 

✓ odds ratio 

u upper cutoff limit for the 95% confidence interval 

l lower cutoff limit for the 95% confidence interval 

z z-score; indicates how many standard deviations an element is from the mean 

m index representing the levels of each explanatory variable 
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APPENDIX B 

EXTRA MATERIAL FOR CHAPTER 4 
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Table B.1: Summary results of full model (1 of 7). 
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Table B.2: Summary results of full model (2 of 7). 
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Table B.3: Summary results of full model (3 of 7). 
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Table B.4: Summary results of full model (4 of 7). 
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Table B.5: Summary results of full model (5 of 7). 
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Table B.6: Summary results of full model (6 of 7). 
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Table B.7: Summary results of full model (7 of 7). 
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